Skip to main content
Log in

Recovery of vesicular storage and release parameters after high frequency stimulation in rat hippocampus

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The replenishment rates estimated from the recovery of synaptic efficacy following synaptic depression are known to be widely scattered. Given the importance of the replenishment during stimulation, especially if it is prolonged, it is important to better understand what influences the recovery of the synaptic efficacy following stimulation. We fit a two-pool model of vesicular secretion to the changes of the excitatory post-synaptic currents recorded in CA1 neurons of rat hippocampal slices to determine how the model parameters change during, and following, long stimulation. The replenishment rate at the end of stimulation inducing synaptic depression differs greatly from that at the beginning of stimulation. It decreases progressively and rapidly (by ~75 % and with a time constant of <10 s) during stimulation, and this is followed by a similarly fast recovery (time constant of ~10 s), but to a steady-state that is approximately twice as large as its pre-stimulation value. Both [Ca++]o and the duration of long stimulation influence the recovery of the replenishment rate. Its new steady-state is significantly higher, if either [Ca++]o is higher or stimulation longer, but the recovery of the replenishment rate becomes clearly slower if [Ca++]o is higher, and faster if stimulation is longer. Many factors thus influence the recovery of the replenishment rate and of the synaptic efficacy, but the stimulation induced [Ca++]i accumulation cannot explain the change of the replenishment rate during recovery. Finally, okadaic acid, which speeds up vesicular trafficking, does not alter the recovery of the replenishment rate. The vesicular replenishment of the RRP following stimulation is thus not likely to be associated with significant vesicular movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aristizabal F, Glavinovic MI (2004) Simulation and parameter estimation of dynamics of synaptic depression. Biol Cybern 90:3–18

    Article  PubMed  CAS  Google Scholar 

  • Atmanspacher H, Rotter S (2008) Interpreting neurodynamics: concepts and facts. Cogn Neurodyn 2:297–318

    Article  PubMed  Google Scholar 

  • Betz WJ, Henkel AW (1994) Okadaic acid disrupts clusters of synaptic vesicles in frog motor nerve terminals. J Cell Biol 124:843–854

    Article  PubMed  CAS  Google Scholar 

  • Birks R, MacIntosh FC (1961) Acetylcholine metabolism of a sympathetic ganglion. Can J Biochem Physiol 39:787–827

    Article  CAS  Google Scholar 

  • Blanton MG, Lom Turcom JJ, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Meth 30:203–210

    Article  CAS  Google Scholar 

  • Bui L, Glavinovic MI (2013) Synaptic activity slows vesicular replenishment at excitatory synapses of rat hippocampus. Cogn Neurodyn. doi:10.1007/s11571-012-9232-y

  • Chirilian PM (1969) Basic network theory. McGraw-Hill, New York

    Google Scholar 

  • Christensen BN, Martin AR (1970) Estimates of probability of transmitter release at the mammalian neuromuscular junction. J Physiol 210:933–945

    PubMed  CAS  Google Scholar 

  • Clopath C (2012) Synaptic consolidation: an approach to long-term learning. Cogn Neurodyn 6:251–257

    Article  PubMed  Google Scholar 

  • Coleman TF, Li Y (1996a) A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J Optim 6:1040–1058

    Article  Google Scholar 

  • Coleman TF, Li Y (1996b) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6:418–445

    Article  Google Scholar 

  • Del Castillo J, Katz B (1954) Statistical factors involved in neuromuscular facilitation and depression. J Physiol 124:574–585

    Google Scholar 

  • Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18:6147–6162

    PubMed  CAS  Google Scholar 

  • Gabriel T, García-Perez E, Mahfooz K, Goni J, Martínez-Turrillas R, Perez-Otano I, Lo DC, Wesseling JF (2011) A new kinetic framework for synaptic vesicle trafficking tested in synapsin knock-outs. J Neurosci 31:11563–11577

    Article  PubMed  CAS  Google Scholar 

  • Gaffield MA, Rizzoli SO, Betz WJ (2006) Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals. Neuron 51:317–325

    Article  PubMed  CAS  Google Scholar 

  • Heinemann C, von RL, Chow RH, Neher E (1993) A two-step model of secretion control in neuroendocrine cells. Pflugers Arch 424:105–112

  • Kavalali ET (2007) Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission. J Physiol 585: 669–679

    Google Scholar 

  • Krnjevic K, Bui L, Glavinovic MI (2008) Vesicular dynamics is time dependent at excitatory synapses of rat hippocampus. Soc Neurosci Abstr 33:432.20/E26

  • Kruckenberg P, Sandweg R (1968) An analog model for acetylcholine release by motor nerve endings. J Theor Biol 19:327–332

    Article  PubMed  CAS  Google Scholar 

  • Kuroda S, Fukushima Y, Yamaguti Y, Tsukada M, Tsuda I (2009) Iterated function systems in the hippocampal CA1. Cogn Neurodyn 3:205–222

    Article  PubMed  Google Scholar 

  • Malchiodi-Albedi F, Petrucci TC, Picconi B, Iosi F, Falchi M (1997) Protein phosphatase inhibitors induce modification of synapse structure and tau hyperphosphorylation in cultured rat hippocampal neurons. J Neurosci Res 48:425–438

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550

    Article  PubMed  CAS  Google Scholar 

  • Ryan TA, Reuter H, Wendland B, Schweizer FE, Tsien RW, Smith SJ (1993) The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11:713–724

    Article  PubMed  CAS  Google Scholar 

  • Satel J, Trappenberg T, Fine A (2009) Are binary synapses superior to graded weight representations in stochastic attractor networks? Cogn Neurodyn 3:243–250

    Article  PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed  CAS  Google Scholar 

  • Shakiryanova D, Klosem MK, Zhoum Y, Gum T, Deitcherm DL, Atwood HL, Hewes RS, Levitan ES (2007) Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. J Neurosci 27:7799–7806

    Article  PubMed  CAS  Google Scholar 

  • Shtrahman M, Yeung C, Nauen DW, Bi GQ, Wu XL (2005) Probing vesicle dynamics in single hippocampal synapses. Biophys J 89:3615–3627

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Tsujimoto T (1995) Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc Natl Acad Sci USA 92:846–849

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Wesseling JF (1998) Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21:415–424

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Wesseling JF (1999) Identification of a novel process limiting the rate of synaptic vesicle cycling at hippocampal synapses. Neuron 24:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Taniike N, Lu YF, Tomizawa K, Matsui H (2008) Critical differences in magnitude and duration of N-methyl-d-aspartate (NMDA) receptor activation between long-term potentiation (LTP) and long-term depression (LTD) induction. Acta Med Okayama 62:21–28

    PubMed  CAS  Google Scholar 

  • Wang LY, Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394:384–388

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Manis PB (2008) Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. J Neurophysiol 100:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Weis S, Schneggenburger R, Neher E (1999) Properties of a model of Ca(++)-dependent vesicle pool dynamics and short term synaptic depression. Biophys J 77:2418–2429

    Article  PubMed  CAS  Google Scholar 

  • Wesseling JF, Lo DC (2002) Limit on the role of activity in controlling the release-ready supply of synaptic vesicles. J Neurosci 22:9708–9720

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    PubMed  CAS  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from the Natural Sciences and Engineering Research Council of Canada and Canadian Heart and Stroke Foundation to M.I.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen I. Glavinović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, L., Glavinović, M.I. Recovery of vesicular storage and release parameters after high frequency stimulation in rat hippocampus. Cogn Neurodyn 7, 311–323 (2013). https://doi.org/10.1007/s11571-012-9240-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9240-y

Keywords

Navigation