Skip to main content

Advertisement

Log in

Neural mechanism of dynamic responses of neurons in inferior temporal cortex in face perception

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Understanding the neural mechanisms of object and face recognition is one of the fundamental challenges of visual neuroscience. The neurons in inferior temporal (IT) cortex have been reported to exhibit dynamic responses to face stimuli. However, little is known about how the dynamic properties of IT neurons emerge in the face information processing. To address this issue, we made a model of IT cortex, which performs face perception via an interaction between different IT networks. The model was based on the face information processed by three resolution maps in early visual areas. The network model of IT cortex consists of four kinds of networks, in which the information about a whole face is combined with the information about its face parts and their arrangements. We show here that the learning of face stimuli makes the functional connections between these IT networks, causing a high spike correlation of IT neuron pairs. A dynamic property of subthreshold membrane potential of IT neuron, produced by Hodgkin–Huxley model, enables the coordination of temporal information without changing the firing rate, providing the basis of the mechanism underlying face perception. We show also that the hierarchical processing of face information allows IT cortex to perform a “coarse-to-fine” processing of face information. The results presented here seem to be compatible with experimental data about dynamic properties of IT neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Afraz S-R, Kiani R, Esteky H (2006) Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–695

    Article  PubMed  CAS  Google Scholar 

  • Baker CI, Behrmann M, Olson C (2002) Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci 5:1210–1216

    Article  PubMed  CAS  Google Scholar 

  • Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:1640–1642

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4:2051–2062

    PubMed  CAS  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2:704–716

    Article  PubMed  CAS  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2003) A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci 23:5235–5246

    PubMed  CAS  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2006) Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex 16:1631–1644

    Article  PubMed  Google Scholar 

  • Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–851

    Article  PubMed  CAS  Google Scholar 

  • Frie P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316

    Article  Google Scholar 

  • Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Kashimori Y, Kambara T (2007) Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli. Biol Cybern 97:293–305

    Article  PubMed  Google Scholar 

  • Gallant JL, Braun J, Van Essen DC (1993) Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259:100–103

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  PubMed  CAS  Google Scholar 

  • Gross CG (2005) Processing the facial image: a brief history. Am Psychol 60:755–763

    Article  PubMed  Google Scholar 

  • Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35:96–111

    PubMed  CAS  Google Scholar 

  • Hirabayashi T, Miyashita Y (2005) Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object. J Neurosci 25:10299–10307

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and exciatation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J Neurosci 24:3313–3324

    Article  PubMed  CAS  Google Scholar 

  • Kanwisher N, MacDermott J, Chun M (1997) The fusiform face area: a module in human extrastriate cortex specialized for the perception of faces. J Neurosci 17:4302–4311

    PubMed  CAS  Google Scholar 

  • Kashimori Y, Ichinose Y, Fujita K (2007) A functional role of interaction between IT cortex and PF cortex in visual categorization task. Neurocomputing 70:1813–1818

    Article  Google Scholar 

  • Kiani R, Esteky H, Tanaka K (2005) Differences in onset latency of macaque inferotemporal neuronal responses to primate and non-primate faces. J Neurophysiol 94:1587–1596

    Article  PubMed  Google Scholar 

  • Kobatake E, Tanaka K (1994) Neural selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71:856–867

    PubMed  CAS  Google Scholar 

  • Kobatake E, Wang G, Tanaka K (1998) Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol 80:324–330

    PubMed  CAS  Google Scholar 

  • Kohonen T (1995) Self-organized maps. Springer, Berlin

    Book  Google Scholar 

  • Leopold DA, O’Toole AJ, Vetter T, Branz N (2001) Prototype-referenced shape encoding revealed by high-level aftereffects. Nat Neurosci 4:89–94

    Article  PubMed  CAS  Google Scholar 

  • Leopold DA, Bondar IV, Giese MA (2006) Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature 442:572–575

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex in monkeys. Curr Biol 5:552–563

    Article  PubMed  CAS  Google Scholar 

  • Messinger A, Squire LR, Zola SM, Albright TD (2005) Neural representations of stimulus associations develop in the temporal lobe during learning. Proc Natl Acad Sci USA 98:12239–12244

    Article  Google Scholar 

  • Miyashita Y (2004) Cognitive memory: cellular and network mechanisms and their top–down control. Science 306:435–440

    Article  PubMed  CAS  Google Scholar 

  • Pasupathy A, Connor CE (1999) Responses of contour features of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature 414:905–908

    Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342

    Article  PubMed  CAS  Google Scholar 

  • Perrett DI, Hietanen JK, Oram MW, Benson PJ, Rolls ET (1992) Organization and functions of cell responsive to faces in the temporal cortex. Phil Trans R Soc B 335:23–30

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long distance synchronization of human brain activity. Nature 397:430–433

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdale of the monkey with responses selective for faces. Human Neurobiol 3:209–222

    CAS  Google Scholar 

  • Rolls ET (1995) Learning mechanism in the temporal lobe visual cortex. Behav Brain Res 66:177–185

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal O, Fusi S, Hochstein S (2001) Forming classes by stimulus frequency: behavior and theory. Proc Natl Acad Sci USA 98:4265–4270

    Article  PubMed  CAS  Google Scholar 

  • Sigala N, Logothetis NK (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415:318–320

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relation? Neuron 24:49–125

    Article  PubMed  CAS  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  PubMed  CAS  Google Scholar 

  • Soga M, Kashimori Y (2009) Functional connections between visual areas in extracting object features critical for a visual categorization task. Vis Res 49:337–347

    Article  PubMed  Google Scholar 

  • Sripati AP, Olson CR (2009) Representing the forest before the trees: a global advantage effect in monkey inferotemporal cortex. J Neurosci 29:7788–7796

    Article  PubMed  CAS  Google Scholar 

  • Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information coded by single neurons in the temporal visual cortex. Nature 400:869–873

    Article  PubMed  CAS  Google Scholar 

  • Szabo M, Stetter M, Deco G, Fusi S, Giudice PD, Mattia M (2006) Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task. Biol Cybern 94:351–365

    Article  PubMed  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  PubMed  CAS  Google Scholar 

  • Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003) Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995

    Article  PubMed  CAS  Google Scholar 

  • Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4:832–838

    Article  PubMed  CAS  Google Scholar 

  • Turchi J, Saunders RC, Mishkin M (2005) Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys. Proc Natl Acad Sci USA 102:2158–2161

    Article  PubMed  CAS  Google Scholar 

  • Urgerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT press, Cambridge, pp 549–586

    Google Scholar 

  • Valentine T (1991) A unified account of the effects of distinctiveness, inversion, and race in face recognition. Quart J Exp Psychol A 43:161–204

    Article  CAS  Google Scholar 

  • Wan H, Warburton EC, Zhu XO, Koder TJ, Park Y, Aggleton JP, Cho K, Bashir ZI, Brown MW (2004) Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory. Eur J Neurosci 20:2214–2224

    Article  PubMed  CAS  Google Scholar 

  • Winters BD, Bussey TJ (2005a) Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25:52–61

    Article  PubMed  CAS  Google Scholar 

  • Winters BD, Bussey TJ (2005b) Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25:4243–4251

    Article  PubMed  CAS  Google Scholar 

  • Winters BD, Bussey TJ (2005c) Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci 21:2263–2270

    Article  PubMed  Google Scholar 

  • Yamane Y, Tsunoda K, Matsumoto M, Phillips AN, Tanifuji M (2006) Representation of the spatial relationship among object parts by neuron in macaque inferotemporal cortex. J Neurophysiol 96:3147–3156

    Article  PubMed  Google Scholar 

  • Young MP, Yamane S (1992) Sparse population coding of face in the inferotemporal cortex. Science 256:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Zangenehour S, Chaudhuri A (2005) Patchy organization and asymmetric distribution of the neural correlates and face processing in monkey inferotemporal cortex. Curr Biol 15:993–1005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Kashimori.

Appendix: The synaptic weights between neurons in V4X and ITX (X = B, M, F)

Appendix: The synaptic weights between neurons in V4X and ITX (X = B, M, F)

The synaptic weights between neurons in V4X and ITX (X = B, M, F) were determined by the learning rule of Kohonen’s self-organized map (Kohonen 1995). The V4B has a retinotopic map consisting of NV4B x NV4B neurons, in which each neuron has the output of 0 or 1, depending on whether it receives the input elicited by a face stimulus, as shown in Fig. 2a. The synaptic weight of the connection from (i, j)th neuron in V4B to the neuron within kth uint in ITB layer, \( w_{V4B - ITB} (k,ij) \), is updated by \( \Updelta w_{V4B - ITB} (k,ij) \), given by

$$ \Updelta w_{V4B - ITB} (k,ij) = \lambda_{1} (X_{ij,V4B} - w_{V4B - ITB} (k,ij))\,for\,k = k*, $$
(11)
$$ k^{*} = \arg \,\mathop {\min }\limits_{k} \,d_{k} $$
(12)
$$ d_{k} = \sqrt {\sum\limits_{ij} {(X_{ij,V4B} - w_{V4B - ITB} (k,ij))^{2} } } , $$
(13)

where Xij,V4B is the output of (i, j)th V4B neuron and λ1 is the learning rate. The parameter values used were: NV4B = 11, λ1 = 0.01.

The V4M has a retinotopic map consisting of NV4M x NV4M neurons, which has the same size as V4B, as shown in Fig. 2b. The V4M neurons encode the information about the relative position of the face parts chosen by attention. When attention is directed to the position (i0, j0) included in a face part, the output of (i, j)th V4M neuron, \( X_{ij,V4M} \), is determined by

$$ X_{ij,V4M} = \left\{ {\begin{array}{*{20}c} {1,} & {\left| {i - i_{0} } \right| \le d,\,or\,\left| {j - j_{0} } \right| \le d} \\ {0,} & {otherwise.} \\ \end{array} } \right. $$
(14)

Then the synaptic weight of the connection from (i, j)th neuron in V4M to kth neuron within lth unit in ITM layer is updated by \( \Updelta w_{V4M - ITM} (kl,ij) \), given by

$$ \Updelta w_{V4M - ITM} (kl,ij) = \lambda_{2} (X_{ij,V4M} - w_{V4M - ITM} (kl,ij))\,for\,(k,.l) = (k*,l*), $$
(15)
$$ (k*,\,l*) = \arg \,\mathop {\min }\limits_{kl} \,d_{kl} , $$
(16)
$$ d_{kl} = \sqrt {\sum\limits_{ij} {(X_{ij,V4M} - w_{V4M - ITM} (kl,ij))^{2} } } . $$
(17)

The synaptic weights of ITM neurons within unit were slightly modulated so as to have different sensitivities to the output of V4M. The parameter values were: NV4M = 11, d = 1, and λ2 = 0.01.

The V4F consists of NV4F x NV4F hypercolumns, each of which contains NL columns, as shown in Fig. 2c. These neurons in the columns encode local curvatures of a face part chosen by attention. The V4F represents only local features, in contrast to the representations of global face by V4B and V4M. Thus the local face features encoded by V4F is a complement to the face features encoded by V4B and V4M. The synaptic weights between ITF and V4F were determined by the learning rules similar to Eqs. (1517). The parameter values used were: NV4F = 3, NL = 10, and the learning rate was set at 0.01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Kashimori, Y. Neural mechanism of dynamic responses of neurons in inferior temporal cortex in face perception. Cogn Neurodyn 7, 23–38 (2013). https://doi.org/10.1007/s11571-012-9212-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9212-2

Keywords

Navigation