Skip to main content
Log in

Eye movement dynamics and cognitive self-organization in typical and atypical development

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

This study analyzed distributions of Euclidean displacements in gaze (i.e. “gaze steps”) to evaluate the degree of componential cognitive constraints on audio-visual speech perception tasks. Children performing these tasks exhibited distributions of gaze steps that were closest to power-law or lognormal distributions, suggesting a multiplicatively interactive, flexible, self-organizing cognitive system rather than a component-dominant stipulated cognitive structure. Younger children and children diagnosed with an autism spectrum disorder (ASD) exhibited distributions that were closer to power-law than lognormal, indicating a reduced degree of self-organized structure. The relative goodness of lognormal fit was also a significant predictor of ASD, suggesting that this type of analysis may point towards a promising diagnostic tool. These results lend further support to an interaction-dominant framework that casts cognitive processing and development in terms of self-organization instead of fixed components and show that these analytical methods are sensitive to important developmental and neuropsychological differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This weak multiplicative distortion may be expressed in a couple of ways depending on how the distributions are instantiated. Exponential distributions can be generated by the sum of the squares of multiple independent normally distributed variables (i.e., the sum of independent components interacting with themselves, that is, accentuating their own contributions). Gamma distributions are generated by the sum of relatively few exponential distributions; exponential distributions are themselves specific cases of gamma distributions. Gamma distributions may also be generated by dividing the basic exponential distribution function by the gamma function, a continuous generalization of the factorial function (i.e., x!), itself a multiplicative transformation. As the number of added exponentials increases towards large limits (i.e., towards the limit of "very many random numbers" as noted in the main text), the gamma distribution converges towards the normal distribution. Alternatively, exponential distributions may be considered as the negative logarithm of uniform distributions in the range (0, 1). In this light, the sum of relatively few exponentials composing the gamma distribution is a logarithm of the product of relatively few uniformly distributed random variables. Because logarithm of repeated multiplication reduces to repeated addition of logarithms, the convergence of gamma distributions to normal distributions holds just the same. Although the values being added affect some aspects of the distribution, in the limit of very large sets of random variables or repeated additions, the distribution will converge to a normal distribution. Thus, in either the gamma or exponential case, no matter how multiplicativity appears in the generation of the distributions, it is quashed by repeated addition of very many random variables (whether those variables are exponential or squared normal). That is, skewed distributions following exponential or gamma form will collapse back towards normal distributions and thus reflect much stronger additive than multiplicative relationships among random variables. For this reason, we do not distinguish whether gamma or exponential distributions reflect greater or lesser multiplicativity: gamma distributions may be more multiplicative in general than in the limiting case of the exponential distribution if only because they involve dividing probabilities by values of the gamma function different from 1 (i.e., different from the multiplicative identity), but their convergence to normal distributions suggests that this multiplicativity is ultimately negligible in the largest limits.

  2. Lack of a characteristic scale refers statistically to the potential divergence of the second moment (i.e., variance). Practically, this point speaks to how confidently we can consider the observed sample to be representative of the yet unmeasured, unobserved behavior. Power-law distributions may not have a finite standard deviation, thus the observed bounds in a particular data set may provide no guarantee that the power-law distributed system will remain within those bounds. The summed behavior of a hierarchy of independent components at different scales may adequately approximate a particular observed power-law-distributed data set, but this system would be committed to the finite bounds of the proposed components. Thus, a multiplicative interdependent system (power-law distribution) and a hierarchy of additive components (multiple additive normal distributions) entail different predictions regarding future observed behavior, both at the lower and upper extremes of the distribution.

  3. The null effect of sex may be noteworthy because ASD disproportionately affects boys rather than girls.

References

  • Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cogn Sci 9:147–169

    Article  Google Scholar 

  • Albert DJ (1966) The effect of spreading depression on the consolidation of learning. Neuropsychologia 4:49–64

    Article  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. Text Revision, Washington

    Google Scholar 

  • Arellano-Valle RB, Branco MD, Genton MG (2006) A unified view on skewed distributions arising from selection. Can J Stat 33:561–574

    Google Scholar 

  • Baltes PB (1987) Theoretical propositions of life-span developmental psychology: on the dynamics between growth and decline. Dev Psychol 23(5):611–626

    Article  Google Scholar 

  • Barsalou LW (2008) Grounded cognition. Ann Rev Psychol 59:617–645

    Article  Google Scholar 

  • Bechtel W, Richardson RC (1993) Discovering complexity: decomposition and localization as strategies in scientific research. Princeton University Press, Princeton

    Google Scholar 

  • Behrmann M, Thomas C, Humphreys K (2006) Seeing it differently: visual processing in autism. Trends Cogn Sci 10(6):258–264

    Article  PubMed  Google Scholar 

  • Brenner LA, Turner KC, Muller RA (2007) Eye movement and visual search: are there elementary abnormalities in autism? J Autism Dev Disord 37:1289–1309

    Article  PubMed  Google Scholar 

  • Bronfenbrenner U (1977) Toward an experimental ecology of human development. Am Psychol 32(7):513–531

    Article  Google Scholar 

  • Bronfenbrenner U (1986) Ecology of the family as a context for human development: research perspectives. Dev Psychol 22(6):723–742

    Article  Google Scholar 

  • Bronfenbrenner U, Ceci SJ (1994) Nature-nuture reconceptualized in developmental perspective: a bioecological model. Psychol Rev 101(4):568–586

    Article  PubMed  CAS  Google Scholar 

  • Bures J, Buresova O, Krivanek J (1974) The mechanism and applications of Leao’s spreading depression of EEG activity. Academic Press, New York

    Google Scholar 

  • Carbonell WS, Murase SI, Horwitz AF, Mandell JW (2005) Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci 25:7040–7047

    Article  PubMed  CAS  Google Scholar 

  • Chawarska K, Shic F (2009) Looking but not seeing: atypical visual scanning and recognition of faces in 2 and 4-year-old children with autism spectrum disorder. J Autism Dev Disord 39:1663–1672

    Article  Google Scholar 

  • Chemero A, Silberstein M (in press) Complexity and extended phenomenological-cognitive systems. Topics Cogn Sci

  • Chiel H, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions of nervous system, body, and environment. Trends Neurosci 20:553–557

    Article  PubMed  CAS  Google Scholar 

  • Chisholm RL, Firtel RA (2004) Insights into morphogenesis from a simple developmental system. Nat Rev Mol Cell Biol 5:531–541

    Article  PubMed  CAS  Google Scholar 

  • Dawson G, Meltzoff AN, Osterling J, Rinaldi J, Brown E (1998) Children with autism fail to orient to naturally occurring social stimuli. J Autism Dev Disord 28(6):479–485

    Article  PubMed  CAS  Google Scholar 

  • Dawson G, Webb SJ, McPartland J (2005) Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Dev Neuropsychol 27(3):403–424

    Article  PubMed  Google Scholar 

  • de Gelder B, Vroomen J, Van der Heide L (1991) Face recognition and lip-reading in autism. Eur J Cogn Psychol 3:69–86

    Article  Google Scholar 

  • Dixon JA, Holden JG, Mirman D, Stephen DG (2011) Multifractal dynamics in the emergence of cognitive structure. Topics Cogn Sci. doi:10.1111/j.1756-8765.2011.01162.x

  • Duch W, Dubosz K (2011) Visualization for understanding of neurodynamical systems. Cogn Neurodyn 5:145–160

    Article  Google Scholar 

  • Eeckhout J (2009) Gibrat’s law for (all) cities: reply. Am Econ Rev 99:1676–1683

    Article  Google Scholar 

  • Elliot CD (1990) Differential ability scales: Introductory and technical handbook. The Psychological Corporation, San Antonio

    Google Scholar 

  • Elman JL, Bates EA, Johnson MH, Karmiloff-Smith A, Parisi D, Plunkett K (1996) Rethinking innateness: A connectionist perspective on development. MIT Press, Cambridge

    Google Scholar 

  • Elsabbagh M, Volein A, Tucker L, Holmboe KGC, Baron-Cohen S et al (2009) Visual orienting in the early broader autism phenotype: disengagement and facilitation. J Child Psychol Psychiatry 50:637–642

    Article  PubMed  Google Scholar 

  • Fahmi R, El-Baz AS, Abd El Munim HE, Farag AA, Casanova MF (2007) Classification techniques for autistic vs. typically developing brain using MRI data. IEEE Int Symp Biomed Imag From Nano Macro 4:1348–1351

    Article  Google Scholar 

  • Farmer JD (1990) A Rosetta Stone for connectionism. Physica D 42:153–187

    Article  Google Scholar 

  • Gong WB, Liu Y, Misra V, Towsley D (2005) Self-similarity and long-range dependence on the internet: a second look at the evidence, origins and implications. Comput Netw 48:377–399

    Article  Google Scholar 

  • Gorji A (2001) Spreading depression: a review of the clinical relevance. Brain Res Rev 38:33–60

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb G, Lickliter R (2007) Probabilistic epigenesis. Dev Sci 10(1):1–11

    Article  PubMed  Google Scholar 

  • Granic I, Hollenstein T (2003) Dynamic systems methods for models of developmental psychopathology. Dev Psychopathol 15(3):641–669

    Article  PubMed  Google Scholar 

  • Granic I, Patterson GR (2006) Toward a comprehensive model of antisocial development: a dynamic systems approach. Psychol Rev 113(1):101–131

    Article  PubMed  Google Scholar 

  • Grinberg YY, Milton JG, Kraig RP (2011) Spreading depression sends microglia on Lévy flights. PLoS ONE 6:e19294

    Article  PubMed  CAS  Google Scholar 

  • Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, Wang X, Rosenberg GA, Lo EH, Moskowitz MA (2004) Spreading depression activates and upregulates MMP-9. J Clin Invest 113:1447–1455

    PubMed  CAS  Google Scholar 

  • Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55:530–540

    Article  PubMed  Google Scholar 

  • Holden JG, Van Orden GC, Turvey MT (2009) Dispersion of response times reveals cognitive dynamics. Psychol Rev 116(2):318–342

    Article  PubMed  Google Scholar 

  • Holden JG, Choi I, Amazeen PG, Van Orden GC (2011) Fractal 1/f dynamics suggest entanglement of measurement and human performance. J Exp Psychol Hum Percept Perf 37:935–948

    Article  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci 79:2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Nat Acad Sci 81:3088–3092

    Article  PubMed  CAS  Google Scholar 

  • Hunnius S, Geuze RH (2004) Developmental changes in visual scanning of dynamic faces and abstract stimuli in infants: a longitudinal study. Infancy 6(2):231–255

    Article  Google Scholar 

  • Ihlen EAF, Vereijken B (2010) Interaction-dominant dynamics in human cognition: beyond 1/f α fluctuation. J Exp Psychol Gen 139:436–463

    Article  PubMed  Google Scholar 

  • Irwin JR, Tornatore LA, Brancazio L, Whalen DH (2011) Can children with autism spectrum disorders “hear” a speaking face? Child Dev 82(5):1397–1403

    Article  PubMed  Google Scholar 

  • Johnson SP, Amso D, Slemmer JA (2003) Development of object concepts in infancy: evidence for early learning in an eye-tracking paradigm. Proc Nat Acad Sci 100(18):10568–10573

    Article  PubMed  CAS  Google Scholar 

  • Johnson SP, Slemmer JA, Amso D (2004) Where infants look determines how they see: eye movements and object perception performance in 3-month-olds. Infancy 6(2):185–201

    Article  Google Scholar 

  • Johnson MH, Griffin R, Csibra G, Halit H, Farroni T, De Haan M, Tucker LA, Baron-Cohen S, Richards J (2005) The emergence of the social brain network: evidence from typical and atypical development. Dev Psychopathol 17:599–619

    Article  PubMed  Google Scholar 

  • Karn KS (2000) “Saccade pickers” vs. “fixation pickers”: the effect of eye tracking instrumentation on research. In: Duchowski AT (ed) Proceedings of the eye tracking research and applications symposium. ACM Press, New York

    Google Scholar 

  • Kello CT, Anderson GG, Holden JG, Van Orden GC (2008) The pervasiveness of 1/f scaling in speech reflects the metastable basis of cognition. Cogn Sci 32(7):1217–1231

    Article  PubMed  Google Scholar 

  • Kello CT, Brown GDA, Ferrer-i-Cancho R, Holden JG, Linkenkaer-Hansen K, Rhodes T, Van Orden GC (2010) Scaling laws in cognitive sciences. Trends Cogn Sci 14:223–232

    Article  PubMed  Google Scholar 

  • Kendal WS (2001) A stochastic model for the self-similar heterogeneitiy of regional organ blood flow. Proc Nat Acad Sci 98:837–841

    Article  PubMed  CAS  Google Scholar 

  • Kiefer AW, Riley MA, Shockley K, Villard S, Van Orden GC (2009) Walking changes the dynamics of cognitive estimates of time intervals. J Exp Psychol Hum Percept Perf 35:1532–1541

    Article  Google Scholar 

  • Klin A, Jones W, Schultz R, Volkmar F, Cohen D (2002) Defining and quantifying the social phenotype in autism. Am J Psychiatry 159:859

    Article  Google Scholar 

  • Kloos H, Van Orden GC (2010) Voluntary behavior in cognitive and motor tasks. Mind Matter 8:19–43

    Google Scholar 

  • Krishna S, Banerjee B, Ramakrishnan TV, Shivashankar GV (2005) Stochastic simulations of the origins and implications of long-tailed distributions in gene expression. Proc Nat Acad Sci 102:4771–4776

    Article  PubMed  CAS  Google Scholar 

  • Lai MC, Lombardo MV, Chakrabarti B, Sadek SA, Pasco G, Wheelwright SJ, Bullmore ET, Baron-Cohen S, Consortium MRCAIMS, Suckling J (2010) A shift to randomness of brain oscillations in people with autism. Biol Psychiat 68:1092–1099

    Article  PubMed  Google Scholar 

  • LaMendola NP, Bever TG (1997) Peripheral and cerebral asymmetries in the rat. Science 278:483–486

    Article  PubMed  CAS  Google Scholar 

  • Landa RJ, Holman KC, Garrett-Mayer E (2007) Social and communication development in toddlers with early and later diagnosis of autism spectrum disorders. Arch Gen Psychiatry 64(7):853–864

    Article  PubMed  Google Scholar 

  • Landry R, Bryson SE (2004) Impaired disengagment of attention in young children with autism. J Child Psychol Psychiatry 45(6):1115–1122

    Article  PubMed  Google Scholar 

  • Lee JE, Liang KJ, Fariss RN, Wong WT (2008) Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalm Vis Sci 49:4169–4176

    Article  Google Scholar 

  • Lerner RM (1991) Changing organism-context relations as the basic process of development: a developmental contextual perspective. Dev Psychol 27(1):27–32

    Article  Google Scholar 

  • Lipinski J, Sandamirskaya Y, Schöner G (2009) Swing it to the left, swing it to the right: enacting flexible spatial language using a neurodynamic framework. Cogn Neurodyn 3:373–400

    Article  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  PubMed  CAS  Google Scholar 

  • Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC et al (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30(3):205–223

    Article  PubMed  CAS  Google Scholar 

  • Magnée MJCM, de Gelder B, van Engeland H, Kemner C (2008) Audiovisual speech integration in pervasive developmental disorder: evidence from event-related potentials. J Child Psychol Psychiat 49:995–1000

    Article  PubMed  Google Scholar 

  • Massaro DW, Bosseler A (2003) Perceiving speech by ear and eye: multimodal integration by children with autism. J Dev Learning Disord 7:111–146

    Google Scholar 

  • Mayr E (1959) Darwin and the evolutionary theory in biology. In: Megger J (ed) Evolution and anthropology: a centennial appraisal. Anthropological Society of Washington, Washington

    Google Scholar 

  • McClelland JL, Botvinick MM, Noelle DC, Plaut DC, Rogers TT, Seidenberg MS, Smith LB (2010) Letting structure emerge: connectionist and dynamical systems approaches to understanding cognition. Trends Cogn Sci 14:348–356

    Article  PubMed  Google Scholar 

  • McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748

    Google Scholar 

  • McMurray B, Aslin RN (2005) Infants are sensitive to within-category variation in speech perception. Cognition 95(2):B15–B26

    Article  PubMed  Google Scholar 

  • Mitzenmacher M (2004) A brief history of generative models of power law and lognormal distributions. Int Math 1:226–251

    Google Scholar 

  • Mongillo EA, Irwin JR, Whalen DH, Klaiman C, Carter AS, Schultz RT (2008) Audiovisual processing in children with and without autism spectrum disorders. J Autism Dev Disord 38:1349–1358

    Article  PubMed  Google Scholar 

  • Montroll EW, Shlesinger MF (1982) On 1/f noise and other distributions with long tails. Proc Nat Acad Sci 79:3380–3383

    Article  PubMed  CAS  Google Scholar 

  • Newell A (1990) Unified theories of cognition. Harvard University Press, Cambridge

    Google Scholar 

  • Papanikolaou S, Bohn F, Sommer RL, Durin G, Zapperi S, Sethna JP (2011) Universality beyond power laws and the average avalanche shape. Nat Phys 7:316–320

    Article  CAS  Google Scholar 

  • Pelphrey KA, Sasson NJ, Reznick JS, Paul G, Goldman BD, Piven J (2002) Visual scanning of faces in autism. J Autism Dev Disord 32:249–296

    Article  PubMed  Google Scholar 

  • Riley MA, Shockley K, Van Orden G (2011) Learning from the body about the mind. Topics Cogn Sci. doi:10.1111/j.1756-8765.2011.01163.x

  • Rumelhart DE, McClelland JL, the PDP Research Group (1986) Parallel distributed processing: explorations in the microstructure of cognition, vol 1. MIT Press, Cambridge

    Google Scholar 

  • Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-tracking protocols. In: Duchowski AT (ed) Proceedings of the eye tracking research and applications symposium. ACM Press, New York

    Google Scholar 

  • Scafetta N, Grigolini P (2002) Scaling detection in time series: diffusion entropy analysis. Phys Rev E 66:036130

    Article  CAS  Google Scholar 

  • Schertzer D, Lovejoy S (2004) Uncertainty and predictability in geophysics: chaos and multifractal insights. In: Sparks RSJ, Hawkesworth CJ (eds) State of the planet: frontiers and challenges in geophysics. American Geophysical Union, Washington

    Google Scholar 

  • Semel E, Wiig E, Secord W (2003) Clinical evaluation of language fundamentals (4th ed.): examiner’s manual. Harcourt Assessment, San Antonio

    Google Scholar 

  • Senju A, Johnson MH (2009) Atypical eye contact in autism: models, mechanisms and development. Neurosci Biobehav Rev 33:1204–1214

    Article  PubMed  Google Scholar 

  • Shic F, Chawarska K, Scassellati B (2008) The amorphous fixation measure revisited: with applications to autism. In: Love BC, McRae K, Sloutsky VM (eds) Proceedings of the 30th annual conference of the cognitive science society. Cognitive Science Society, Austin

    Google Scholar 

  • Shlesinger MF, Zaslavsky GM, Klafter J (1993) Strange kinetics. Nature 363:31–37

    Article  CAS  Google Scholar 

  • Singer JD, Willett JB (2003) Applied longitudinal analysis: modeling change and event occurrence. Oxford University Press, New York

    Google Scholar 

  • Smith LB (2005) Cognition as a dynamic system: principles from embodiment. Dev Rev 25:278–298

    Article  Google Scholar 

  • Smith EG, Bennetto L (2007) Audiovisual speech integration and lipreading in autism. J Child Psychol Psychiat 48:813–821

    Article  PubMed  Google Scholar 

  • Solé RV, Manrubia SC, Benton M, Kauffman S, Bak P (1999) Criticality and scaling in evolutionary ecology. Trends Ecol Evol 14:156–160

    Article  PubMed  Google Scholar 

  • Speranza A, Sollich P (2003) Isotropic-nematic phase equilibria of polydisperse hard rods: the effect of fat tails in the length distribution. J Chem Phys 118:5213–5223

    Article  CAS  Google Scholar 

  • Spivey MJ (2007) The continuity of mind. Oxford University Press, New York

    Google Scholar 

  • Stanley HE, Amaral LAN, Gopikrishnan P, PCh Ivanov, Keitt TH, Plerou V (2001) Scale invariance and universality: organizing principles in complex systems. Phys A 281:60–68

    Google Scholar 

  • Stephen DG, Anastas J (2011) Fractal fluctuations in gaze speed visual search. Attent Percept Psychophys 73:666–677

    Article  Google Scholar 

  • Stephen DG, Dixon JA (2009) The self-organization of insight: entropy and power laws in problem solving. J Problem Solving 2(1):72–101

    Google Scholar 

  • Stephen DG, Dixon JA (2011) Strong anticipation: multifractal cascade dynamics modulate scaling in synchronization behaviors. Chaos Solitons Fractals 44:160–168

    Article  Google Scholar 

  • Stephen DG, Hajnal A (2011) Transfer of calibration between hand and foot: functional equivalence and fractal fluctuations. Attent Percept Psychophys 73:1302–1328

    Article  Google Scholar 

  • Stephen DG, Mirman D (2010) Interactions dominate the dynamics of visual cognition. Cognition 115:154–165

    Article  PubMed  Google Scholar 

  • Stephen DS, Dixon JA, Isenhower RW (2009a) Dynamics of representational change: entropy, action, and cognition. J Exp Psychol Hum Percept Perf 35:1811–1832

    Article  Google Scholar 

  • Stephen DG, Boncoddo RA, Magnuson JS, Dixon JA (2009b) The dynamics of insight: mathematical discovery as a phase transition. Memory Cogn 37:1132–1149

    Article  Google Scholar 

  • Stephen DG, Mirman D, Magnuson JS, Dixon JA (2009c) Lévy-like diffusion in spoken-language comprehension. Phys Rev E 79:056114

    Article  CAS  Google Scholar 

  • Stephen DG, Arzamarski R, Michaels CF (2010) The role of fractality in perceptual learning: exploration in dynamic touch. J Exp Psychol Hum Percept Perf 36:1161–1173

    Article  Google Scholar 

  • Streit WJ (2000) Microglial response to brain injury: a brief synopsis. Toxicol Pathol 28:28–30

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Sato MJ, Yanagida T, Ueda M (2008) Functional analysis of spontaneous cell movement under different physiological conditions. PLoS ONE 3:e2648

    Article  PubMed  CAS  Google Scholar 

  • Thelen E, Schöner G, Scheier C, Smith LB (2001) The dynamics of embodiment: a field theory of infant perseverative reaching. Behav Brain Sci 24(1):1–86

    Article  PubMed  CAS  Google Scholar 

  • Turvey MT, Fitzpatrick P (1993) Commentary: development of perception-action systems and general principles of pattern formation. Child Dev 64:1175–1190

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya A, Rieu JP, Glazier JA, Sawada Y (2001) Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates. Phys A 293:549–558

    Article  Google Scholar 

  • Van Orden GC, Holden JG, Turvey MT (2003) Self-organization of cognitive performance. J Exp Psychol Gen 132(3):331–350

    Article  PubMed  Google Scholar 

  • Van Orden G, Kello CT, Holden JG (2010) Situated behavior and the place of measurement in psychological theory. Ecol Psychol 22:24–43

    Article  Google Scholar 

  • West BJ, Grigolini P (2010) Chipping away at memory. Biol Cybern 103:167

    Article  PubMed  CAS  Google Scholar 

  • Williams JH, Massaro DW, Peel NJ, Bosseler A, Suddendorf T (2004) Visual-auditory integration during speech imitation in autism. Res Dev Disabil 25:559–575

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Moss Rehabilitation Research Institute and National Institutes of Health grant R03DC007339 (J. Irwin, PI) to Haskins Laboratories. We thank Jessica Hafetz and James Dixon for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian G. Stephen.

Appendix

Appendix

See Table 4.

Table 4 Full correlation matrix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirman, D., Irwin, J.R. & Stephen, D.G. Eye movement dynamics and cognitive self-organization in typical and atypical development. Cogn Neurodyn 6, 61–73 (2012). https://doi.org/10.1007/s11571-011-9180-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-011-9180-y

Keywords

Navigation