Skip to main content
Log in

Modeling brain dynamics using computational neurogenetic approach

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The paper introduces a novel computational approach to brain dynamics modeling that integrates dynamic gene–protein regulatory networks with a neural network model. Interaction of genes and proteins in neurons affects the dynamics of the whole neural network. Through tuning the gene–protein interaction network and the initial gene/protein expression values, different states of the neural network dynamics can be achieved. A generic computational neurogenetic model is introduced that implements this approach. It is illustrated by means of a simple neurogenetic model of a spiking neural network of the generation of local field potential. Our approach allows for investigation of how deleted or mutated genes can alter the dynamics of a model neural network. We conclude with the proposal how to extend this approach to model cognitive neurodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Available from http://aratika.aut.ac.nz/adpgn_movies/KCIR/CSS/frameset.html.

References

  • Abraham WC, Williams JM (2003) Properties and mechanisms of LTP maintenance. Neuroscientist 9(6):463–474. doi:10.1177/1073858403259119

    Article  PubMed  CAS  Google Scholar 

  • Basalyga DM, Simionescu DT, Xiong W et al (2004) Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation 110(22):3480–3487. doi:10.1161/01.CIR.0000148367.08413.E9

    Article  PubMed  CAS  Google Scholar 

  • Benuskova L, Jain V, Wysoski SG, Kasabov N (2006) Computational neurogenetic modelling: a pathway to new discoveries in genetic neuroscience. Int J Neural Syst 16(3):215–227. doi:10.1142/S0129065706000627

    Article  PubMed  Google Scholar 

  • Benuskova L, Kasabov N (2007) Computational neurogenetic modeling. Springer, New York

    Google Scholar 

  • Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457. doi:10.1172/JCI24761

    Article  PubMed  CAS  Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:2–36. doi:10.1016/S1364-6613(00)01564-3

    Article  Google Scholar 

  • Brown A, Yates PA, Burrola P et al (2000) Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102:77–88. doi:10.1016/S0092-8674(00)00012-X

    Article  PubMed  CAS  Google Scholar 

  • Brillinger DR (1965) An introduction to polyspectra. Am Math Stat 36:1351–1374. doi:10.1214/aoms/1177699896

    Article  Google Scholar 

  • Bulik CM, Devlin B, Bacanu S-A et al (2003) Significant linkage on chromosome 10p in families with bulimia nervosa. Am J Hum Genet 72:200–207. doi:10.1086/345801

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Rozov A (2000) Genomic control of receptor function. Cell Mol Life Sci 57:1499–1507. doi:10.1007/PL00000634

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1930. doi:10.1126/science.1099745

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362. doi:10.1038/nature04599

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389. doi:10.1126/science.1083968

    Article  PubMed  CAS  Google Scholar 

  • Cerny V (1985) A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45:41–51. doi:10.1007/BF00940812

    Article  Google Scholar 

  • Chan ZSH, Havukkala I, Jain V et al (2008) Soft computing methods to predict gene regulatory networks: an integrative approach on time-series gene expression data. Appl Soft Comput 8(3):1189–1199. doi:10.1016/j.asoc.2007.02.023

    Article  Google Scholar 

  • Chang C, Ding Z, Hung YS, Fung PCW (2008) Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics 24(11):1349–1358. doi:10.1093/bioinformatics/btn131

    Article  PubMed  CAS  Google Scholar 

  • Charpier S, Leresche N, Deniau J-M et al (1999) On the putative contribution of GABAB receptors to the electrical events occuring during spontaneous spike and wave discharges. Neuropharmacology 38:1699–1706. doi:10.1016/S0028-3908(99)00139-2

    Article  PubMed  CAS  Google Scholar 

  • Chen CK, Chen SL, Mill J et al (2003) The dopamine transporter gene is associated with attention deficit hyperactivity disorder in a Taiwanese sample. Mol Psychiatry 8(4):393–396. doi:10.1038/sj.mp.4001238

    Article  PubMed  CAS  Google Scholar 

  • Cloninger CR (2002) The discovery of susceptibility genes for mental disorders. Proc Natl Acad Sci USA 99(21):13365–13367. doi:10.1073/pnas.222532599

    Article  PubMed  CAS  Google Scholar 

  • Citron M (2004) Strategies for disease modification in Alzheimer’s disease. Nat Rev Neurosci 5(9):677–685. doi:10.1038/nrn1495

    Article  PubMed  CAS  Google Scholar 

  • Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol 406(1):443–468

    PubMed  CAS  Google Scholar 

  • Deisz RA (1999) GABA_B receptor-mediated effects in human and rat neocortical neurones in vitro. Neuropharmacology 38:1755–1766. doi:10.1016/S0028-3908(99)00136-7

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci 18:9099–9111

    PubMed  CAS  Google Scholar 

  • Diamond ME, Petersen RS, Harris JA, Panzeri S (2003) Investigations into the organization of information in sensory cortex. J Physiol (Paris) 97(4–6):529–536. doi:10.1016/j.jphysparis.2004.01.010

    Article  Google Scholar 

  • Diwadkar VA, Flaugher B, Jones T, Zalányi L, Ujfalussy B, Keshavan MS, et al. (2008) Impaired associative learning in schizophrenia: behavioral and computational studies. Cogn Neurodynamics (in press). doi:10.1007/s11571-008-9054-0

  • Egan MF, Goldberg TE, Kolachana BS et al (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98(12):6917–6922. doi:10.1073/pnas.111134598

    Article  PubMed  CAS  Google Scholar 

  • Elliott T, Shadbolt NR (1999) A neurotrophic model of the development of the retinogeniculocortical pathway induced by spontaneous retinal waves. J Neurosci 19(18):7951–7970

    PubMed  CAS  Google Scholar 

  • Freeman WJ (2000) Neurodynamics. An exploration in mesoscopic brain dynamics. Springer, London

    Google Scholar 

  • Freeman WJ (2007) Definitions of state variables and state space for brain-computer interface. Part 1. Multiple hierarchical levels of brain function. Cogn Neurodyn 1(1):3–14. doi:10.1007/s11571-006-9001-x

    Article  PubMed  Google Scholar 

  • Gardiner RM (1999) Genetic basis of human epilepsies. Epilepsy Res 36:91–95. doi:10.1016/S0920-1211(99)00043-1

    Article  PubMed  CAS  Google Scholar 

  • George AL (2004) Inherited channelopathies associated with epilepsy. Epilepsy Curr 4(2):65–70. doi:10.1111/j.1535-7597.2004.42010.x

    Article  PubMed  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking Neuron Models. Cambridge University Press, Cambridge

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search. Optimization and machine learning. Addison-Wesley, Reading

    Google Scholar 

  • Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117.111–117.118

    Article  Google Scholar 

  • Grice DE, Halmi KA, Fichter MM et al (2002) Evidence for a susceptibility gene for anorexia nervosa on chromosome 1. Am J Hum Genet 70:787–792. doi:10.1086/339250

    Article  PubMed  CAS  Google Scholar 

  • Haken H (2007) Towards a unifying model of neural net activity in the visual cortex. Cogn Neurodynamics 1(1):15–25. doi:10.1007/s11571-006-9005-6

    Article  Google Scholar 

  • Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 99:7746–7750. doi:10.1073/pnas.122205699

    Article  PubMed  CAS  Google Scholar 

  • Jansen R, Greenbaum D, Gerstein M (2002) Relating whole-genome expression data with protein–protein interactions. Genome Res 12(1):37–46. doi:10.1101/gr.205602

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44(2):107–112. doi:10.1016/S0361-9230(97)00094-4

    Article  PubMed  CAS  Google Scholar 

  • Kasabov N, Benuskova L (2004) Computational neurogenetics. J Comp Theor Nanosci 1(1):47–61. doi:10.1166/jctn.2004.006

    Article  CAS  Google Scholar 

  • Kasabov N, Benuskova L (2006) Theoretical and computational models for neuro, genetic, and neuro-genetic information processing. In: Rieth M, Schommers W (eds) Handbook of computational and theoretical nanotechnology, vol 6. American Scientific Publishers, Los Angeles, pp 779–816

    Google Scholar 

  • Kasabov N, Chan ZSH, Jain V et al (2004) Gene regulatory network discovery from time-series gene expression data—a computational intelligence approach. In: Pal NR, Kasabov N, Mudi RK (eds) Neural information processing—11th international conference, ICONIP 2004, Calcutta, vol 3316. Lecture Notes in Computer Science, Springer, Berlin, pp 1344–1353

    Google Scholar 

  • Katok A, Hasselblat B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kleppe IC, Robinson HPC (1999) Determining the activation time course of synaptic AMPA receptors from openings of colocalized NMDA receptors. Biophys J 77:1418–1427

    Article  PubMed  CAS  Google Scholar 

  • Kudela P, Franaszcuk PJ, Bergey GK (2003) Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior. Biol Cybern 88(4):276–285. doi:10.1007/s00422-002-0381-7

    Article  PubMed  Google Scholar 

  • Langley K, Marshall L, Bree MVD, Thomas H, Owen M, O’Donovan M et al (2004) Association of the dopamine d(4) receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am J Psychiatry 161(1):133–138. doi:10.1176/appi.ajp.161.1.133

    Article  PubMed  Google Scholar 

  • Lee C, Bae K, Edery I (1998) The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-TIM complex. Neuron 21:857–867. doi:10.1016/S0896-6273(00)80601-7

    Article  PubMed  CAS  Google Scholar 

  • Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. W.H. Freeman & Co, New York

    Google Scholar 

  • Lutter D, Stadlthanner K, Theis F et al. (2006) Analyzing gene expression profiles with ICA. In: Ruggiero C (ed) Biomedical engineering, Innsbruck, Austria, 15–17 February 2006

  • Markram H (2006) The Blue Brain project. Nat Rev Neurosci 7:153–160. doi:10.1038/nrn1848

    Article  PubMed  CAS  Google Scholar 

  • Maass W, Bishop CM (eds) (1999) Pulsed neural networks. MIT Press, Cambridge

  • MacBeath G, Schreiber S (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485):1760–1763

    PubMed  CAS  Google Scholar 

  • Marnellos G, Mjolsness ED (2003) Gene network models and neural development. In: van Ooyen A (ed) Modeling neural development. MIT Press, Cambridge, pp 27–48

    Google Scholar 

  • Matsuura H, Tateno K, Aou S (2008) Dynamical properties of the two-process model for sleep-wake cycles in infantile autism. Cogn Neurodyn (in press). doi:10.1007/s11571-008-9051-3

  • McIntosh H (1998) Autism is likely to be linked to several genes. The APA Monitor online 29(11). http://www.apa.org/monitor/nov98/gene.html

  • Meisler MH, Kearney J, Ottman R, Escayg A (2001) Identification of epilepsy genes in humans and mouse. Annu Rev Genet 35:567–588. doi:10.1146/annurev.genet.35.102401.091142

    Article  PubMed  CAS  Google Scholar 

  • Mjolsness E, Sharp DH, Reinitz J (1991) A connectionist model of development. J Theor Biol 152:429–453. doi:10.1016/S0022-5193(05)80391-1

    Article  PubMed  CAS  Google Scholar 

  • Morales J, Hiesinger PR, Schroeder AJ et al (2002) Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34:961–972. doi:10.1016/S0896-6273(02)00731-6

    Article  PubMed  CAS  Google Scholar 

  • Nikias C, Raghuveer MR (1987) Bispectrum estimation: a digital signal processing framework. Proc IEEE 75:869–891. doi:10.1109/PROC.1987.13824

    Article  Google Scholar 

  • Pandey SC (2004) The gene transcription factor cyclic AMP-responsive element binding protein: role in positive and negative affective states of alcohol addiction. Pharmacol Ther 104(1):47–58. doi:10.1016/j.pharmthera.2004.08.002

    Article  PubMed  CAS  Google Scholar 

  • Pastor P, Goate AM (2004) Molecular genetics of Alzheimer’s disease. Curr Psychiatry Rep 6(2):125–133. doi:10.1007/s11920-004-0052-6

    Article  PubMed  Google Scholar 

  • Porjesz B, Almasy L, Edenberg HJ (2002) Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc Natl Acad Sci USA 99:3729–3733. doi:10.1073/pnas.052716399

    Article  PubMed  CAS  Google Scholar 

  • Reggia JA, Ruppin E, Glanzman DL (eds) (1999) Disorders of brain, behavior, and cognition: the neurocomputational perspective. Springer, New York

    Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E Stat Nonlin Soft Matter Phys 65(4):19–24. doi:10.1103/PhysRevE.65.041924

    Google Scholar 

  • Seth AK, Edelman GM (2007) Distinguishing causal interactions in neural populations. Neural Comput 19(4):910–933. doi:10.1162/neco.2007.19.4.910

    Article  PubMed  Google Scholar 

  • Schwaller B, Tetko IV, Tandon P et al (2004) Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures. Mol Cell Neurosci 25:650–663. doi:10.1016/j.mcn.2003.12.006

    Article  PubMed  CAS  Google Scholar 

  • Shi SH, Hayashi Y, Petralia RS et al (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816. doi:10.1126/science.284.5421.1811

    Article  PubMed  CAS  Google Scholar 

  • Smolen P, Hardin PE, Lo BS et al (2004) Simulation of Drosophila circadian oscillations, mutations, and light responses by a model with VRI, PDP-1, and CLK. Biophys J 86:2786–2802

    PubMed  CAS  Google Scholar 

  • Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B et al (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24(3):473–486. doi:10.1038/sj.emboj.7600543

    Article  PubMed  CAS  Google Scholar 

  • Steinlein OK (2004) Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 5:400–408. doi:10.1038/nrn1388

    Article  PubMed  CAS  Google Scholar 

  • Storjohann R, Marcus GF (2005) NeuroGene: integrated simulation of gene regulation, neural activity and neurodevelopment. In: Proceedings of the international joint conference on neural networks, Montreal, pp 428–433

  • Sugai T, Kawamura M, Iritani S et al (2004) Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann N Y Acad Sci 1025(Oct):84–91. doi:10.1196/annals.1316.011

    Article  CAS  Google Scholar 

  • Suri V, Lanjuin A, Rosbash M (1999) TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock. EMBO J 18:675–686. doi:10.1093/emboj/18.3.675

    Article  PubMed  CAS  Google Scholar 

  • Thivierge J-P, Marcus GF (2006) Computational developmental neuroscience: exploring the interactions between genetics and neural activity. In: Proceedings of the international joint conference on neural networks, Vancouver, pp 438–443

  • van Beijsterveldt CEM, van Baal GCM (2002) Twin and family studies of the human electroencephalogram: a review and meta-analysis. Biol Psychol 61:111–138. doi:10.1016/S0301-0511(02)00055-8

    Article  PubMed  Google Scholar 

  • van Ooyen A (ed) (2003) Modeling neural development. MIT Press, Cambridge

  • Veenstra-Vanderweele J, Christian SL, Cook EH Jr (2004) Autism as a paradigmatic complex genetic disorder. Annu Rev Genomics Hum Genet 5:379–405. doi:10.1146/annurev.genom.5.061903.180050

    Article  PubMed  CAS  Google Scholar 

  • Villa AEP, Asai Y, Tetko IV et al (2005) Cross-channel coupling of neuronal activity in parvalbumin-deficient mice susceptible to epileptic seizures. Epilepsia 46(Suppl. 6):359

    Google Scholar 

  • Vreugdenhil M, Jefferys JGR, Celio MR, Schwaller B (2003) Parvalbumin-deficiency facilitates repetitive IPSCs and related inhibition-based gamma oscillations in the hippocampus. J Neurophysiol 89:1414–1423. doi:10.1152/jn.00576.2002

    Article  PubMed  Google Scholar 

  • Wang JC, Hinrichs AL, Stock H et al (2004) Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum Mol Genet 13(17):1903–1911. doi:10.1093/hmg/ddh194

    Article  PubMed  CAS  Google Scholar 

  • Weaver DC, Workman CT, Stormo GD (1999) Modeling regulatory networks with weight matrices. In: Proceedings of Pacific symposium on biocomputing. World Scientific, Singapore, pp 112–123

  • Weiler IJ, Irwin SA, Klintsova AY et al (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci USA 94:5395–5400. doi:10.1073/pnas.94.10.5395

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci 15:1499–1508. doi:10.1046/j.1460-9568.2002.01985.x

    Article  PubMed  CAS  Google Scholar 

  • White JA, Banks MI, Pearce RA, Kopell NJ (2000) Networks of interneurons with fast and slow g-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci USA 97(14):8128–8133. doi:10.1073/pnas.100124097

    Article  PubMed  CAS  Google Scholar 

  • Whitehead DJ, Skusa A, Kennedy PJ et al (2004) Evaluating an evolutionary approach for reconstructing gene regulatory networks. In: Pollack J (ed) Proceedings of 9th international conference on the simulation and synthesis of living systems (ALIFE IX). MIT Press, Cambridge, pp 427–432

    Google Scholar 

  • Willshaw D, Price D (2003) Models for topographic map formation. In: vanOoyen A (ed) Modeling neural development. MIT Press, Cambridge, pp 213–244

    Google Scholar 

  • Zubenko GS, Maher BS, Hughes HB, Zubenko WN, Stiffler JS, Kaplan BB et al (2003) Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 123(1):1–18. doi:10.1002/ajmg.b.20073

    Article  Google Scholar 

Download references

Acknowledgments

The paper is supported by the Knowledge Engineering and Discovery Research Institute KEDRI (http://www.kedri.info), Auckland University of Technology and the FRST funded grant AUTX02001 (2002–2007). We would like to thank Simei Gomes Wysoski for implementing the CNGM simulator. Alessandro E. P. Villa is gratefully acknowledged for discussions on brain experimental data gathering and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubica Benuskova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benuskova, L., Kasabov, N. Modeling brain dynamics using computational neurogenetic approach. Cogn Neurodyn 2, 319–334 (2008). https://doi.org/10.1007/s11571-008-9061-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-008-9061-1

Keywords

Navigation