Skip to main content
Log in

Consciousness related neural events viewed as brain state space transitions

  • Review
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

This theoretical and speculative essay addresses a categorical distinction between neural events of sensory-motor cognition and those presumably associated with consciousness. It proposes to view this distinction in the framework of the branch of Statistical Physics currently referred to as Modern Critical Theory (Stanley, Introduction to phase transitions and critical phenomena, 1987; Marro and Dickman, Nonequilibrium phase transitions in lattice, 1999). Based on established landmarks of brain dynamics, network configurations and their role for conveying oscillatory activity of certain frequencies bands, the question is examined: what kind of state space transitions can systems with these properties undergo, and could the relation between neural processes of sensory-motor cognition and those of events in consciousness be of the same category as is characterized by state transitions in non-equilibrium physical systems? Approaches for empirical validation of this view by suitably designed brain imaging studies, and for computational simulations of the proposed principle are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acebron JA, Bonilla LL, Perez Vincente CJ, Ritort F, Spigler R (2005) The Kuramoto Model: simple paradigm for synchronization phenomena. Rev Mod Phys 77:137–185

    Google Scholar 

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low frequency, small-world human brain functional networks with highly connected association cortical hubs. J Neurosci 26:63–72

    PubMed  CAS  Google Scholar 

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Google Scholar 

  • Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small world networks. Proc Natl Acad USA 97:11149–11152

    CAS  Google Scholar 

  • Atkinson AP, Thomas MSC, Cleeremans A (2000) Consciousness: mapping the theoretical landscape. Trends Cogn Sci 4:372–382

    PubMed  Google Scholar 

  • Atmanspacher H, Kronz F (1999) Many realisms. In: Scott JC (ed) Modeling consciousness across the disciplines. University of America Press, New York, pp 281–306

    Google Scholar 

  • Baars BJ (1988) A cognitive theory of consciousness. Cambridge University Press, New York

    Google Scholar 

  • Baars BJ (1997) In the theater of consciousness. Oxford University Press, New York

    Google Scholar 

  • Baars BJ (2002) The conscious access hypothesis. Trends Cogn Sci 6:47–52

    PubMed  Google Scholar 

  • Baars BJ, Ramsoy TZ, Laureys S (2003) Brain, conscious experience and the observing self. TINS 26:671–675

    PubMed  CAS  Google Scholar 

  • Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403

    PubMed  CAS  Google Scholar 

  • Barahona M, Pecora LM (2001) Synchronization in small-world systems. Phys Rev Lett 89:054101

    Google Scholar 

  • Bassett DS, Bullmore ET (2006) Small-world brain networks. Neuroscientist 12:512–523

    PubMed  Google Scholar 

  • Bassett DS, Meyer-Lindenberg A, Achard S, Dule T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci 103:19518–19523

    PubMed  CAS  Google Scholar 

  • Batterman RW (2002) The devil in the details. Oxford University Press

  • Bedeau M (2002) Downward causation and the autonomy of weak emergence. Principia 6(1):5–50

    Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177

    PubMed  CAS  Google Scholar 

  • Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that scale for many hours in cortical tissue slice cultures. J Neurosci 24:5216–5229

    PubMed  CAS  Google Scholar 

  • Bibbig A, Traub RD, Miles A, Whittington MA (2002) Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model. J Neurophysiol 88:1634–1654

    PubMed  Google Scholar 

  • Bienenstock EA (1995) A model of neocortex. Network Comput Neural Syst 6:179–224

    Google Scholar 

  • Bollobas B (1985) Random graphs. Academic Press, London

    Google Scholar 

  • Braeutigam S, Stins JF, Rose SPR, Swithenby SJ, Ambler T (2001) Magneto-encephalographic signals identify stages in real-life decision processes. Neural Plast 8:241–252

    PubMed  CAS  Google Scholar 

  • Braeutigam S, Rose SPR, Swithenby SJ, Ambler T (2004) The distributed neural systems supporting choice-making in real-life sitiations: differences between men and women when choosing groceries detected using magneto-encephalography. Eur J Neurosci 1–10

  • Breakspear M, Williams LM, Stam CJ (2004) A novel method for the topographic analysis of neural activity reveals formation and dissolution of ‘dynamic cell assemblies’. J Comput Neurosci 16:49–68

    PubMed  Google Scholar 

  • Breitmeyer BG, Ogmen H (1984/2006) Visual masking: time slices through consciousness and unconscious vision. Oxford University Press, UK

    Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:26–36

    PubMed  Google Scholar 

  • Breskin I, Soriano J, Moses E, Tlustry T (2006) Percolation in living neural Networks. Phys Rev Lett 97:188102

    PubMed  Google Scholar 

  • Brovellli A, Ding M, Ledberg A,Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large scale sensorimotor cortical network: directional Influences revealed by Granger causality. Proc Natl Acad Sci USA 101:9849–9854

    Google Scholar 

  • Bullmore E, Fadili J, Maxim V, Sendur L, Whitcher B, Suckling J, Brammer M, Breakspear M (2004) Wavelets and functional magnetic resonance imaging of the human brain. NeuroImage 23:S234–S249

    PubMed  Google Scholar 

  • Buschman TJ, Miller EK (2007) Top-own versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862

    PubMed  CAS  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press

  • Changeux J-P, Michel CM (2006) Mechanisms of neural integration at the brain-scale level. In: Grillner S, Graybiel AM (eds) Microcircuits—the interface between neurons and global brain function. The MIT Press, Cambridge, MA, pp 347–370

    Google Scholar 

  • Chialvo DR (2006) The brain near the edge. 9th Granada seminar on computational physics, Granada, Spain

  • Chialvo DR, Balenzuela P, Fraiman D (2008) The brain: what is it critical about? Proceedings of the American Institute of Physics in print

  • Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interaction of nervous system, body and environment. TINS 20:553–557

    PubMed  CAS  Google Scholar 

  • Churchland PM (1989) A neurcomputational perspective. MIT Press, Cambridge, MA

    Google Scholar 

  • Churchland PM (2006) Inner space and outer spaces: the new epistemology. In: Hetherington SS (ed) Epistemology futures. Clarendon Press, Oxford, pp 48–70

    Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    PubMed  CAS  Google Scholar 

  • Damasio AR (1994) Descarts error: emotions, reason and the human brain. Grosset/Putnam, New York

    Google Scholar 

  • Damasio AR (1999) The feeling of what happens: body and emotion in the making of consciousness. Harcourt, New York

    Google Scholar 

  • Damasio AR (2001) Fundamental feelings. Nature 413:781

    PubMed  CAS  Google Scholar 

  • Damasio AR (2003) Looking for Spinoza: joy, sorrow and the feeling brain. Harcourt, New York

    Google Scholar 

  • Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LBJ, Parvizi J, Hichwa RD (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3:1049–1056

    PubMed  CAS  Google Scholar 

  • Dehaene S, Changeux J-P (1989) A simple model of prefrontal cortex in delayed response tasks. J Cogn Neurosci 1:244–261

    Google Scholar 

  • Dehaene S, Changeux J-P (1991) The Wisconsin card sorting test: theoretical analysis and simulation of a reasoning task in a model neuronal network. Cereb Cortex 1:62–79

    PubMed  CAS  Google Scholar 

  • Dehaene S, Changeux J-P (1997) A hierarchical neuronal network for planning behavior. Proc Natl Acad Sci USA 94:13293–13298

    PubMed  CAS  Google Scholar 

  • Dehaene S, Nagacche l (2002) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1–37

    Google Scholar 

  • Dehaene S, Chageux J-P, Naccache L, Sackur J, Sergent C (2006) Conscious, preconscious and subliminal processing: a testable taxonomy. Trends Cogn Sci 10:204–211

    PubMed  Google Scholar 

  • Dehaene S, Sregent T, Changeux J-P (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA 100:8520–8525

    PubMed  CAS  Google Scholar 

  • Del Cul A, Baillet S, Dehaene S (2007) Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol 5:e260

    PubMed  Google Scholar 

  • Dickman R, Vespignani A, Zapperi S (1998) Self-organized criticality as an absorbing state phase transition. Phys Rev E 57:5095–5105

    CAS  Google Scholar 

  • Dorogovtsev SN, Mendes JFF (2003) Evolution of networks. Oxford University Press, Oxford

    Google Scholar 

  • Dorogovtesev SN, Mendes JFF, Samukhin AN (2000) Structure of growing networks with preferential linking. Phys Rev Lett 85:4633–4636

    Google Scholar 

  • Dosenbach NUF, Visscher KM, Palmer E, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812

    PubMed  CAS  Google Scholar 

  • Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task controls in humans. Proc Natl Acad Sci USA 104:11073–11078

    PubMed  CAS  Google Scholar 

  • Edelman GM (2003) Naturalizing consciousness: a theoretical framework. Proc Natl Acad Sci USA 100:5520–5524

    PubMed  CAS  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102-1

    Google Scholar 

  • Fair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2007) Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA 104:13507–13512

    PubMed  CAS  Google Scholar 

  • Fell J (2004) Identifying neural correlates of consciousness: the state space approach. Conscious Cogn 13:709–729

    PubMed  Google Scholar 

  • Fingelkurts AnA, Fingelkurts AlA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2(3):261–296

    Google Scholar 

  • Fingelkurts AnA, Fingelkurts AlA (2005) Mapping of the brain operational archi-textonics. In Chen FJ (ed) Focus on brain mapping research. Nova Science Pub., Inc.

  • Fingelkurts AnA, Fingelkurts AlA (2006) Timing in cognition and EEG brain dynamics: discreteness vs. continuity. Cogn Process 7:135–162

    PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen D, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional Networks. Proc Natl Acad Sci USA 102:9673–9678

    PubMed  CAS  Google Scholar 

  • Fox MD, Corbetta M, Snyder AZ, Vincent JL, Reichle ME (2006) Spontaneous neural activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051

    PubMed  CAS  Google Scholar 

  • Franovic I, Miljkovic V (2007) Fractal properties of percolation clusters in Euclidean neural networks. Chaos Solitons Fractals. doi:10.1016/j.chaos.2007.06.026

  • Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • Freeman WJ (2004a) Origin, structure and role of background EEG activity: Part 1. Analytic amplitude. Clin Neurophysiol 115:2077–2088

    PubMed  Google Scholar 

  • Freeman WJ (2004b) Origin, structure and role of background EEG activity: Part 2. Analytic phase. Clin Neurophysiol 115:2089–2107

    PubMed  Google Scholar 

  • Freeman WJ (2005a) Origin, structure and role of background EEG activity: Part 3. Clin Neurophysiol 116:1118–1129

    PubMed  Google Scholar 

  • Freeman WJ, Holmes MD (2005b) Metastability, instability and state transitions in neocortex. Neural Netw 18:497–504

    PubMed  Google Scholar 

  • Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Dynamics of human neocortex that optimizes its stability and flexibility. Int J Intell Syst 21:881–901

    Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neural coherence. Trends Cogn Sci 9:474–480

    PubMed  Google Scholar 

  • Friston KJ (2000) The labile brain I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B 355:215–236

    CAS  Google Scholar 

  • Gade PM, Sinha S (2006) How crucial is small world connectivity for dynamics? Int J Bifurcat Chaos 16:2767–2775

    Google Scholar 

  • Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual mental imagery and visual perception. Cogn Brain Res 20:226–241

    Google Scholar 

  • Gervasoni D, Lin SH, Ribeirao S, Soares ES, Pantoja J, Nicolelis MAL (2004) Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci 24:11137–1147

    PubMed  CAS  Google Scholar 

  • Gewaltig MO, Diesman M, Aertsen A (2001) Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Netw 14:657–673

    PubMed  CAS  Google Scholar 

  • Giunti M (1997) Computation, dynamics and cognition. Oxford University Press, Oxford

    Google Scholar 

  • Gladwell M (2000) The Tipping Point: how little things can make a big difference. Little Brown, Boston

    Google Scholar 

  • Goldenfeld N, Martin O, Ooono Y (1989) Intermediate asymptotics and renormalization group theory. J Scientific Comput 4:355–372

    Google Scholar 

  • Gong P, Nikolaev AR, van Leeuwen C (2003) Scale invariant fluctuations of the dynamical synchronization in human brain electrical activity. Neurosci Lett 336:33–36

    PubMed  CAS  Google Scholar 

  • Grinstein G, Linsker R (2005) Synchronous neural activity in scale free network models versus random network models. Proc Natl Acad Sci 102:9948–9953

    PubMed  CAS  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    PubMed  CAS  Google Scholar 

  • Haldeman C, Beggs JM (2005) Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys Rev Lett 94:058101

    PubMed  Google Scholar 

  • Hilgetag CC, O’Neill MA, Young MP (2000) Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos Trans R Soc Lond B 355:71–89

    CAS  Google Scholar 

  • Hilgetag CC, Koetter R, Stephan KE, Sporns O (2002) Computational methods for the analysis of brain connectivity. In: Ascoli GA (ed) Computational neuroanatomy. Humana Press, Totowa, NJ

    Google Scholar 

  • Hinrichsen H (2006) Non-equilibrium phase transitions. Physica A 369:1–28

    Google Scholar 

  • Hobson JA, Pace-Schott EF, Stickgold R (2000) Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behav Brain Sci 23:793–1121

    PubMed  CAS  Google Scholar 

  • Hohenberg PC, Halperin BI (1977) Theory of dynamical critical phenomena. Rev Mod Phys 49:435–479

    CAS  Google Scholar 

  • Honey CJ, Koetter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104:10240–10245

    PubMed  CAS  Google Scholar 

  • Humphries MD, Gurney K, Precott TJ (2006) The brain stem reticular formation is a small-world, not scale-free network. Proc R Soc B 273:503–511

    PubMed  CAS  Google Scholar 

  • Jirsa VK (2004) Connectivity and dynamics of Neural Information processing. Neuroinformatics 2:1–22

    Google Scholar 

  • John ER (2002) The neurophysics of consciousness. Brain Res Rev 39:1–28

    PubMed  Google Scholar 

  • Just W, Schmueser F (2005) On phase transitions in coupled map lattices. Lect Notes Phys 671:33–61

    Article  Google Scholar 

  • Kelso JAS, Engstrom DA (2006) The complementary nature. MIT Press, Cambridge, MA

    Google Scholar 

  • Kelso K, Bressler SL, DeGuzman GC, Ding M, Fuchs A, Holroyd T (1992) A phase transition in human brain and behavior. Phys Lett A 169:134–144

    Google Scholar 

  • Kim J (1999) Making sense of emergence. Philos Perspect 11:185–207

    Google Scholar 

  • Koenig T, Prichep L, Lehmann DL, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16:41–48

    PubMed  Google Scholar 

  • Koenig T, Studer D, Hubl D, Melie L, Strik WK (2005) Brain connectivity at different time scales measured with EEG. Philos Trans R Soc B 360:1015–1023

    CAS  Google Scholar 

  • Koetter R (2001) Neuroscience databases: tools for exploring brain structure function relationships. Philos Trans R Soc Lond Biol Sci 356:1111–1120

    Google Scholar 

  • Kosslyn SM, Ganis G, Thompson WL (2001) Neutral foundations of imagery. Nat Rev Neurosci 2:635–642

    PubMed  CAS  Google Scholar 

  • Kossly SM, Thompson WL, Alpert NM (1997) Neural systems aherd by visual imagery and visual perception: a positron emission tomography study. NeuroImage 6:320–334

    Google Scholar 

  • Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2004) Neuropercolation: a random cellular automata approach to spatio-temporal neurodynamics. Lect Notes Comput Sci 3305:435–443

    Google Scholar 

  • Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92:367–379

    PubMed  Google Scholar 

  • Kuznetsov SP (1992) Universality and scaling in two-dimensional coupled map lattices. Chaos Solitons Fractals 2:281–301

    Google Scholar 

  • Lachaux J-P, Rodriguez E, Martineri J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    PubMed  CAS  Google Scholar 

  • Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758–2761

    PubMed  CAS  Google Scholar 

  • Lakatos I (1978) The methodology of scientific research programs. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Lamme VAF (2003) Why visual attention and awareness are different. Trends Cogn Sci 7:12–18

    PubMed  Google Scholar 

  • Lamme VAF (2006a) Zap! Magnetic tricks on conscious and unconscious vision. Trends Cogn Sci 10:193–195

    PubMed  Google Scholar 

  • Lamme VAF (2006b) Towards a true neural stance on consciousness. N Cogn Sci 10:494–501

    Google Scholar 

  • Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. TINS 23:571–579

    PubMed  CAS  Google Scholar 

  • Latora V, Marchiori M (2001) Efficint behavior of small-world networks. Phys Rev Lett 87:198701-1-4

    Google Scholar 

  • Laughlin RB (2005) A different universe: reinventing physics from the bottom down. Basic Books, New York

    Google Scholar 

  • Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M (1998) Brain electric microstates as building blocks of spontaneous thinking. Int J Psychophysiol 29:1–11

    PubMed  CAS  Google Scholar 

  • Lehmann D, Faber PL, Gianotti LRR, Kochi K, Pascual-Marqui RD (2006) Coherence and phase locking in the scalp EEG and between LORETTA model sources, and microstates as putative mechanisms o brain temporo-spatial functional organization. J Physiol Paris 99:29–36

    PubMed  Google Scholar 

  • Le VanQuyen M (2003) Disentangling the dynamic core: a research program for a neurodynamics at the large scale. Biol Res 36:67–88

    Google Scholar 

  • Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscilations. J Neurosci 21:1370–1377

    PubMed  CAS  Google Scholar 

  • Luebeck S (2004) Universal scaling behavior of non-equilibrium phase transtitions. Int J Mod Phys B 18:3977

    Google Scholar 

  • Marcq P, Chate H, Manneville P (1996) Universal critical behavior in two-dimensional coupled map lattices. Phys Rev Lett 77:4003–4006

    PubMed  CAS  Google Scholar 

  • Marro J, Dickman R (1999) Nonequilibrium phase transitions in lattice models. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Mason MF, Norton MI, van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering Minds: the default network and stimulus-independent thought. Science 315:393–395

    PubMed  CAS  Google Scholar 

  • Masuda N, Aihara K (2004) Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90:302–309

    PubMed  Google Scholar 

  • Maye M (2003) Correlated neural activity can represent multiple bonding solutions. Neurocomputing 52–54:73–77

    Article  Google Scholar 

  • Maye A, Werning M (2004) Temporal binding of non-uniform objects. Neurocomputing 58–60:941–948

    Google Scholar 

  • Mechelli A, Price CJ, Friston KJ, Ishai A (2004) Where Bottom-up Meets Top-down: neuronal interactions during Perception and Imagery. Cereb Cortex 14:1256–1265

    PubMed  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    PubMed  Google Scholar 

  • Meyer-Lindenberg A, Zieman U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99:10948–10953

    PubMed  CAS  Google Scholar 

  • Michel CM, Henggeler B, Lehmann D (1992) 42-channel potential map series to visual contrast and stereo stimuli: perceptual and cognitive event related segments. Int J Psychophysiol 12:133–145

    PubMed  CAS  Google Scholar 

  • Mikhailov AAS, Calenbuur V (2006) From cells to societies. Springer, New York

    Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chlovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    PubMed  CAS  Google Scholar 

  • Mirollo RE, Strogatz SH (1990) Synchronization of pulse coupled oscillators. SIAM J Appl Math 50:1645–1662

    Google Scholar 

  • Moore C, Newman MEJ (2000) Epidemics and percolation in small world networks. Phys Rev E 61:5678–5682

    CAS  Google Scholar 

  • Newman MEJ (2000) Models of the small world. arXiv:cond-mat/0001118v2

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Google Scholar 

  • Newman MEJ, Watts DJ (1999) Scaling and percolation in small-world networks. Phys Rev E 60:7332–7342

    CAS  Google Scholar 

  • Newman MEJ, Jensen J, Ziff RM (2002) Percolation and epidemics in a two-dimensional small-world. Phys Rev E 65:21904-1

    Google Scholar 

  • Odor G (2004) Universality classes in nonequilibrium lattice systems. Rev Mod Phys 76:663–724

    CAS  Google Scholar 

  • Pascual-Leone A., Wals V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512

    PubMed  CAS  Google Scholar 

  • Percha B, Dzakpasu R, Zochowski M, Parent J (2005) Transition from local to global phase synchrony in small world neural networks and its possible implication for epilepsy. Phys Rev E 72:031909

    Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization. Cambridge University Press

  • Plenz D, Thiagarajan TC (2007) The organizing principle of neuronal avalanches: cell assemblies in the cortex. Trends Neurosci 30:101–110

    PubMed  CAS  Google Scholar 

  • Port RF, van Gelder T (1995) Mind as motion: explorations in the dynamics of cognition. MIT Press, Cambridge, MA

    Google Scholar 

  • Primas H (1998) Emergence in exact natural sciences. http://philsci-archive.pitt.edu/archive/00000953.pdf

  • Rodriguez E, George N, Lachaux J-P, Martineri J, Renaults B, Varela FJ (1999) Perception’s shoadow: long-distance synchronization of human brain activity. Nature 397:430–433

    PubMed  CAS  Google Scholar 

  • Rolf J, Bohr T, Jensen MH (1998) Directed percolation universality in asynchronous evolution of spontaneous intermittency. Phys Rev E 57:R2503-57

    Google Scholar 

  • Rudrauf D, Damasio A (2006) The biological basis of subjectivity: a hypothesis. In: Kriegel U, Williford K (eds) Self-representational approaches to consciousness. MIT Press, Cambridge, MA, pp 423–464

    Google Scholar 

  • Saalman YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–1615

    Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Correlated neural activity and the flow of neural Information. Nat Rev Neurosci 2:539–550

    PubMed  CAS  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005a) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342

    PubMed  Google Scholar 

  • Salvador R, Suckling J, Schwarzbauer C, Bullmore E (2005b) Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B 360:937–946

    Google Scholar 

  • Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296

    PubMed  CAS  Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–464

    PubMed  CAS  Google Scholar 

  • Schulman LS, Gaveau B (2001) Coarse grains: the emergence of space and order. Found Phys 31:713–731

    Google Scholar 

  • Searl JR (2000) Consciousness. Annu Rev Neurosci 23:557–578

    Google Scholar 

  • Sergent C, Dehaene S (2004) Is consciousness a graded phenomenon? Psychol Sci 15:720–728

    PubMed  Google Scholar 

  • Seth AK, Edelman GM (2004) Environment and behavior influence the complexity of evolved neural networks. Adapt Behav 12:5–20

    Google Scholar 

  • Seth AK, Izhikevich E, Reeke GN, Edelman GM (2006) Theories and measures on consciousness: an extended framework. Proc Natl Acad Sci USA 103:10799–10804

    PubMed  CAS  Google Scholar 

  • Sokal A, Bricmont J (2004) Defense of a modest scientific realism. In: Carrier M, Roggenhofer J, Kueppers G, Banchard Ph (eds) Knowledge and the world: beyond the science wars. Springer, New York

    Google Scholar 

  • Sporns O (2006) Small-world connectivity, motif composition and complexity of fractal neural connections. BioSystems 85:55–64

    PubMed  Google Scholar 

  • Sporns O, Koetter R (2004) Motifs in brain networks. PLoS Biol 2:3369

    Google Scholar 

  • Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162

    PubMed  Google Scholar 

  • Sporns O, Gally JA, Reeke GN, Edelman GM (1989) Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci USA 86:7265–7269

    PubMed  CAS  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–140

    PubMed  CAS  Google Scholar 

  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    PubMed  Google Scholar 

  • Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28

    PubMed  CAS  Google Scholar 

  • Stam CJ, de Bruin EA (2004) Scale-free dynamics of global functional connectivity in the human brain. Hum Brain Mapp 22:97–109

    PubMed  Google Scholar 

  • Stanley HE (1987) Introduction to phase transitions and critical phenomena. Oxford University Press, UK

    Google Scholar 

  • Stanley HE (1999) Scaling, universality and renormalization: the three pillars of modern critical phenomena. Rev Mod Phys 71:S358–S366

    CAS  Google Scholar 

  • Stauffer D, Aharony A (1991/1994) Introduction to percolation theory. CRC Press, Boca Raton

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    PubMed  CAS  Google Scholar 

  • Super H, Spekreijse H, Lamme VAF (2001) Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat Neurosci 4:304–310

    PubMed  CAS  Google Scholar 

  • Tass P, Haken H (1996) Synchronization in networks of limit cycle oscillators. Z Phys B 100:303–320

    CAS  Google Scholar 

  • Thompson E (2007) Mind in life. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Thompson E, Varela FJ (2001) Radical embodiment: neural dynamics and consciousness. Trends Cogn Sci 5:418–425

    PubMed  Google Scholar 

  • Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846–1851

    PubMed  CAS  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    PubMed  CAS  Google Scholar 

  • Van Gelder T (1998) The dynamical hypothesis in cogitive science. Behav Brain Sci 21:615–628

    PubMed  Google Scholar 

  • Varela FJ (1995) Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. Biol Res 28:81–95

    PubMed  CAS  Google Scholar 

  • Varela FJ, Lachaux JP, Rodriguez E, Martineri J (2001) The Brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    PubMed  CAS  Google Scholar 

  • Von der Malsburg C (1981/82, 1994) The correlation theory of brain function. In: Domany E (ed) Models of the nervous systems, vol. 2

  • Von der Malsburg C (1999) The what and the why of binding: the modeler’s perspective. Neuron 24:95–104

    PubMed  Google Scholar 

  • Wackermann J (1999) Towards a quantitative characterization of functional states of the brain: from non-linear methodology to the global linear description. Int J Psychophysiol 34:65–80

    PubMed  CAS  Google Scholar 

  • Wang XF, Chen G (2002) Synchronization in small-world dynamical networks. Int J Bifurcat Chaos 12:187–192

    Google Scholar 

  • Wallenstein GV, Kelso JAS, Bressler l (1995) Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 84:626–634

    Google Scholar 

  • Watts DJ (1999) Small worlds. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    PubMed  CAS  Google Scholar 

  • Weiskrantz L (1986) Blindsight: case study and implications. Clarendon Press, Oxford

    Google Scholar 

  • Werner G (2007a) Brain dynamics across levels of organization. J Physiol Paris 101:273–279

    PubMed  Google Scholar 

  • Werner G (2007b) Perspectives of the neuroscience of cognition and consciousness. BioSystems 87:82–95

    PubMed  Google Scholar 

  • Werning M, Maye M (2006) Frames, coherency chains and hierarchical binding: the cortical implementation of concepts. http://www.psych.unito.it/csc/cogsci05/frame/poster/3/f794-werning.pdf

  • Wilson KG (1979) Problems in physics with many scales of length. Sci Am 241:140–157

    Article  Google Scholar 

  • Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612

    Google Scholar 

  • Yeomans JM (1992/2002) Statistical mechanics of phase transitions. Clarendon Press, Oxford

    Google Scholar 

  • Zemanova L, Zhou C, Kurths J (2006) Structural and functional clusters of complex brain networks. Physica D 224:202–212

    Google Scholar 

  • Zhou C, Zemanova L, Zamora G, Hilgetag CC, Kurths J (2006) Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 97:238103

    PubMed  Google Scholar 

  • Zhou C, Zemanova L, Zamora-Lopez G, Hilgetag CC, Kurths J (2007) Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J Phys 9:178–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, G. Consciousness related neural events viewed as brain state space transitions. Cogn Neurodyn 3, 83–95 (2009). https://doi.org/10.1007/s11571-008-9040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-008-9040-6

Keywords

Navigation