Skip to main content
Log in

On the neurodynamics of the creation of consciousness

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Consciousness is expected to have a specific temporal dynamics. The COrollary Discharge of Attention Movement (CODAM) model of consciousness is deduced from an engineering approach to attention and motor attention. This model is briefly described, as is support arising from brain dynamics, especially that for the attentional blink. The understanding of known temporal dynamics in the brain associated with the emergence of consciousness is then developed from CODAM, and specifically related to the N2 ERP brain signal. How the pre-reflective self, as content-free, interacts with the content of experience is discussed in terms of the possibility that such experience arises from some proto-self generated by body signals; experiments are described which indicate that no pre-reflective self based on body signals is observable. Only a content-free pre-reflective self is consistent with this data, as CODAM suggests. How such a pre-reflective self can be further fused to give temporal continuity of a sense of self is considered in terms of various mechanisms which could be present for preserving the sense of self. The observation of the N2 signal in hippocampal encoding is proposed as providing a justification for the encoding of the N2–P3 sequence of brain signals. This would correspond to episodic encoding of the sequence of experiences of the pre-reflective self; this will thereby provide the necessary control signals in time so that ‘I’ is experienced as part of the retrieval of such memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baddeley AD (1986) Workiong memory. Oxford University Press, Oxford

    Google Scholar 

  • Baddeley AD (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4(11):417–423

    Article  PubMed  Google Scholar 

  • Bard C, Turrell Y, Fleury M, Teasdale N, Lamarre Y, Martin O (1999) Deafferentation and pointing with visual double-step perturbations. Exp Brain Res 125:410–416

    Article  PubMed  CAS  Google Scholar 

  • Burgess N, Hitch G (2005) Computational models of working memory: putting long-term memory into context. Trends Cogn Sci 9(11):535–541

    Article  PubMed  Google Scholar 

  • Chambers CD, Payne JM, Stokes MG, Mattingley J (2004) Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 7(3):217–218

    Article  PubMed  CAS  Google Scholar 

  • Chambers CD, Stokes MD, Janko NE, Mattingley J (2006) Enhancement of visual selection during transient disruption of parietal cortex. Brain Res 1097:149–155

    Article  PubMed  CAS  Google Scholar 

  • Clarke JM, Halgren E, Chauvel P (1999) Intracranial ERPs in humans during a lateralized visual oddball task. II. Temporal, parietal and frontal recordings. Clin Neurophysiol 110:1226–1244

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  PubMed  CAS  Google Scholar 

  • Crick FC, Koch C (1998) Consciousness and neuroscience. Cereb Cortex 8:97–108

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modelling allows feedback control for fast reaching movements. Trends Cogn Neurosci 4:423–431

    Article  Google Scholar 

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2:563–567

    Article  PubMed  CAS  Google Scholar 

  • Eimer M (1996) The N2pc component as an indicator of attentional selectivity. Electroencephalogr Clin Neurophysiol 99:225–234

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Duque D, Thornton IM (2000) Change detection without awareness. Vis Cogn 7:323–344

    Article  Google Scholar 

  • Fragopanagos N, Kockelhoren S, Taylor JG (2005) A neurodynamic model of the attentional blink. Cogn Brain Res 24:568–586

    Article  Google Scholar 

  • Frith CJ (1992) The cognitive neuropsychology of schizophrenia. Lawrence Erlbaum Associates, Hove

  • Fourneret P, Jeannerod M (1997) Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia 36:1133–1140

    Article  Google Scholar 

  • Fuggetta G, Pavone EF, Walsh V, Kiss M, Eimer M (2006) Cortico-cortical interactions in spatial attention: a combined ERP/TMS study. J Neurophysiol 95:3277–3280

    Article  PubMed  Google Scholar 

  • Gallagher S (2000) Philosophical conceptions of the self. Trends Cogn Sci 4(1):14–21

    Article  PubMed  Google Scholar 

  • Grossberg S (1999) The link between brain learning, attention and consciousness. Conscious Cogn 8:1–44

    Article  PubMed  CAS  Google Scholar 

  • Hommel B, Kessler K, Schmitz F, Gross J, Akyurek E, Shapiro K, Schnitzler A (2006) How the brain blinks: towards a neurocognitive model of the attentional blink. Psychol Res 70:425–435

    Article  PubMed  Google Scholar 

  • Hopf JM, et al (2000) Neural sources of focused attention in visual search. Cereb Cortex 10:1231–1241

    Article  Google Scholar 

  • Ioannides AA, Taylor JG (2003) Testing models of attention with MEG. #804 in proceedings of IJCNN’03, IEEE Press

  • Jolicoeur P, Sessa P, Dell’Acqua R (2006) On the control of visual spatial attention: evidence from human electrophysiology. Psychol Res 70:414–424

    Article  PubMed  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention. Annu Rev Neurosci 23:315–341

    Article  PubMed  CAS  Google Scholar 

  • Kastner S, Ungerleider LG (2001) The neural basis of biased competition in human visual cortex. Neuropsychologia 39(12):1263–1276

    Google Scholar 

  • Lamme V (2003) Why visual awareness and attention are different. Trends Cogn Sci 7(1):12–18

    Article  PubMed  Google Scholar 

  • Landman R, Spekreijse H, Lamme VAF (2003) Large capacity storage of integrated objects before change blindness. Vision Res 43:149–164

    Article  PubMed  Google Scholar 

  • Luck SJ, Woodman GF, Vogel EK (2000) Event-related potential studies of attention. Trends Cogn Sci 4:432–440

    Google Scholar 

  • Mack A, Rock I (1998) In attentional blindness. MIT Press, Cambridge, MA

    Google Scholar 

  • McAdams CJ, Maunsell JHR (1999) Effects of attention on orientation tuning functions of singel neurons in Macaque cortical area V4. J Neurosci 19(1):431–441

    Google Scholar 

  • Mehta AD, Ulbert I, Schroeder CcE (2000) Intermodal selective attention in monkeys. II. Physiological mechanisms of modulation. Cereb Cortex 10:359–370

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Wolpert DM (1996). Forward models for physiological motor control. Neural Netw 9(8):1265–1279

    Article  PubMed  Google Scholar 

  • Nobre AC (2001). The attentive homunculus: now you see it, now you don’t. Neurosci Biobehav Rev 25:477–496

    Article  PubMed  CAS  Google Scholar 

  • O’Shea J, Muggleton NJ, Cowey A, Walsh V (2004) Timing of target discrimination in human frontal eye fields. J Cogn Neurosci 16:1060–1067

    Article  PubMed  Google Scholar 

  • Pisella L, Grea H, Tillikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y (2000) An ‘automatic pilot for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3:729–736

    Article  PubMed  CAS  Google Scholar 

  • Pollen DA (2003) Explicit neural representations, recurrent neural networks and conscious visual perception. Cereb Cortex 13(8):807–814

    Article  PubMed  Google Scholar 

  • Praamstra P, Oostenveld R, (2003) Attention and movement-related motor cortex activation: a high density EEG study of spatial stimulus-response compatibility. Cogn Brain Res 16:309–323

    Article  CAS  Google Scholar 

  • Ramachandran VS, Hirstein W (1998) The perception of phantom limbs. The DO Hebb lecture. Brain 121:1603–1630

    Article  PubMed  Google Scholar 

  • Rushworth MFS, Ellison A., Walsh V (2001a). Complementary localization and lateralization of orienting and motor attention. Nat Neurosci 4(6):656–661

    Article  CAS  Google Scholar 

  • Rushworth MFS, Krams M, Passingham RE, (2001b) J Cogn Neurosci 13:698–710

    Article  CAS  Google Scholar 

  • Rushworth MFS, Nixon PD, Renowden S., Wade DT, Passingham RE (1997). The left parietal cortex and motor attention. Neuropsychologia 35(9):1261–1273

    Article  PubMed  CAS  Google Scholar 

  • Sabes M (2000) The planning and control of reaching movements. Curr Opin Neurobiol 10:740–746

    Article  PubMed  CAS  Google Scholar 

  • Schluter ND, Krams M, Rushworth MFS, Passingham RE (2001). Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39:105–113

    Article  PubMed  CAS  Google Scholar 

  • Schwoebel J, Boronat CB, Coslett HB (2002) The man who executed “imagined” movements: evidence for dissociable components of the body schema. Brain Cogn 50:1–16

    Article  PubMed  Google Scholar 

  • Sergent C, Baillet S, Dehaene S (2005) Timing of the brain events underlying access to consciousness during the attentional blink. Nat Neurosci 8:1391–1400

    Google Scholar 

  • Shapiro KL, Arnell KM, Raymond JE (1997) The attentional blink. Trends Cogn Sci 1:291–295

    Article  Google Scholar 

  • Shapiro KL, Hillstrom AP, Husain M (2002) Control of visuotemporal attention by inferior parietal and superior temporal cortex. Curr Biol 12:1320–1325

    Article  PubMed  CAS  Google Scholar 

  • Shinba T (1999) Neuronal firing activity in the dorsal hippocampus during the auditory discrimination oddball task in awake rats. Cogn Brain Res 8:241–350

    Article  CAS  Google Scholar 

  • Shoemaker (1968) Self-reference and self-awareness. J Philos 65:556–570

    Article  Google Scholar 

  • Taylor JG (1996) Breakthrough to awareness. Biol Cybern 75:59–72

    Google Scholar 

  • Taylor JG (1999) The race for consciousness. MIT Press, Cambridge Mass

  • Taylor JG (2000) Attentional movement: the control basis for consciousness. Soc Neurosci Abstr 26, 2231#839.3

  • Taylor JG (2002a) Paying attention to consciousness. Trends Cogn Sci 6(5): 206–210

    Article  Google Scholar 

  • Taylor JG (2002b) From matter to mind. J Conscious Stud 6:3–22

    Google Scholar 

  • Taylor JG (2003a) Consciousness, neural models of In: Arbib MA (eds) The handbook of brain theory and neural networks. MIT Press, Cambridge, MA, pp 263–267

    Google Scholar 

  • Taylor JG (2003b) Paying attention to consciousness. Prog Neurobiol 71:305–335

    Article  Google Scholar 

  • Taylor JG (2003c) The CODAM model and deficits of consciousness. Proc conference of knowledge-based expert systems, Oxford

  • Taylor JG (2004) A review of brain-based cognitive models. Cogn Process 5(4):190–217

    Google Scholar 

  • Taylor JG (2005) From matter to consciousness: towards a final solution? Phys Life Rev 2:1–44

    Article  Google Scholar 

  • Taylor JG (2006) The mind: a user’s manual. Wiley, London

    Google Scholar 

  • Taylor JG, Freeman W (1997) Special issue of neural networks. Neural Netw Conscious 10(7):1173–1343

    Google Scholar 

  • Taylor JG, Rogers M (2002) A control model of the movement of attention. Neural Netw 15:309–326

    Article  PubMed  CAS  Google Scholar 

  • Taylor JG, Fragopanagos N (2003) Simulation of attention control models of sensory and motor paradigms. Proc IJCNN’03

  • Todd JJ, Marois R (2004) Capacity limit of visual short-term memory in human parietal cortex. Nature 428:751–754

    Article  PubMed  CAS  Google Scholar 

  • Vogel FK, Luck SJ, Shaprio K (1998) Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J Exp Psychol 241:1656–1674

    Google Scholar 

  • Vogel EK, Machizawa MG (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428:748–751

    Article  PubMed  CAS  Google Scholar 

  • Wearing D (2005) Forever today. Random House Press, London

    Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Woodman GF, Luck SJ (1999) Electrophysiological measurements of rapid shifts of attention during visual search. Nature 400:867–869

    Article  PubMed  CAS  Google Scholar 

  • Zahavi D (1999) Self-awareness and alterity. North-Western University Press, Evanston, IL

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J.G. On the neurodynamics of the creation of consciousness. Cogn Neurodyn 1, 97–118 (2007). https://doi.org/10.1007/s11571-006-9011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-006-9011-8

Keywords

Navigation