Skip to main content
Log in

Modeling of aortic valve dynamics in a lumped parameter model of left ventricular-arterial coupling

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

A lumped parameter model of the sub-system of left ventricle, aortic valve, systemic arteries, systemic capillaries and systemic veins was considered during systole. A model of aortic valve dynamics based solely on geometrical and kinematical consideration is defined. The model is described by two geometrical parameters of aortic valve and a few kinematical relationships. The proposed model mimics the incisures in the aortic flow and aortic pressure very well. We showed that the dicrotic notch could be explained by aortic valve closing in terms of a lumped parameter model, without a need for any wave reflection theory. According to the proposed model the effects of aortic valve dynamics on the aortic flow and pressure are mainly limited to the valve opening and closing periods. The model offers a new paradigm for defining a more realistic left ventricle model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armentano R.L., Barra J.G., Levenson J., Simon A., Pichel R.H.: Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ. Res. 76, 468–478 (1995)

    Google Scholar 

  2. Chemla D., Antony I., Zamani K., Nitenberg A.: Mean aortic pressure is the geometric mean of systolic and diastolic aortic pressure in resting humans. J. Appl. Physiol. 99, 2278–2284 (2005)

    Article  Google Scholar 

  3. Garcia D., Barenbrug P., Pibarot P., Dekker A., van der Veen F.H., Maessen J.G., Dumesnil J.G., Durand L.G.: A ventricular-vascular coupling model in presence of aortic stenosis. Am. J. Physiol. Heart Circ. Physiol. 288, H1874–H1884 (1995)

    Article  Google Scholar 

  4. Handke M., Heinrichs G., Beyersdorf F., Olschewski M., Bode C., Geibel A.: In vivo analysis of aortic valve dynamics by transesophageal three-dimensional echocardiography with high temporal resolution. J. Thorac. Cardiovasc. Surg. 125, 1412–1419 (2003)

    Article  Google Scholar 

  5. Higashidate M., Tamiya K., Beppu T., Imai Y.: Regulation of the aortic valve opening in vivo dynamic measurement of aortic valve orifice area. J. Thorac. Cardiovasc. Surg. 110, 496–503 (1995)

    Article  Google Scholar 

  6. Kass D.A., Beyar R., Lankford E., Heard M., Maughan W.L., Sagawa K.: Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation 79, 167–178 (1989)

    Google Scholar 

  7. Kass D.A., Maughan W.L.: From “Emax” to pressure-volume relations: a broader view. Circulation 78, 1203–1212 (1988)

    Google Scholar 

  8. Lewis J.F., Quinones M.A.: Pulsed Doppler echocardiographic determination of stroke volume. Circulation 70, 425–431 (1984)

    Google Scholar 

  9. Raff G.L., Glantz S.A.: Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ. Res. 48, 813–824 (1981)

    Google Scholar 

  10. Safar M.E., Laurent P.: Pulse pressure and arterial stiffness in rats: comparison with humans. Am. J. Physiol. Heart Circ. Physiol. 285, H1363–H1369 (2003)

    Google Scholar 

  11. Sagawa K., Suga H., Shoukas A.A., Bakalar K.M.: End-systolic pressure-volume ratio: a new index of ventricular contractility. Am. J. Cardiol. 40, 748–753 (1976)

    Article  Google Scholar 

  12. Segers P., Stergiopulos N., Westerhof N.: Relation of effective arterial elastance to arterial system properties. Am. J. Physiol. Heart Circ. Physiol. 282, H1041–H1046 (2002)

    Google Scholar 

  13. Stergiopulos N., Meister J.J., Westerhof N.: Determinants of stroke volume and systolic and diastolic aortic pressure. Am. J. Physiol. Heart Circ. Physiol. 270, H2050–H2059 (1996)

    Google Scholar 

  14. Suga H., Sagawa K.: Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–126 (1974)

    Google Scholar 

  15. Suga H., Sagawa K., Shoukas A.A.: Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32, 314–322 (1973)

    Google Scholar 

  16. Teichholz L.E., Kreulen T., Herman M.V., Gorlin R.: Problems in echocardiographic volume determination: Echocardiographic-angiographic correlations in the presence or absence of asynergy. Am. J. Cardiol. 37, 7–12 (1976)

    Article  Google Scholar 

  17. Thomas J.D., Zhou J., Greenberg N., Bibawy G., McCarthy P.M., Vandervoort P.M.: Physical and physiological determinants of pulmonary venous flow: numerical analysis. Am. J. Physiol. Heart Circ. Physiol. 272, H2453–H2465 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdravko Virag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virag, Z., Lulić, F. Modeling of aortic valve dynamics in a lumped parameter model of left ventricular-arterial coupling. Ann. Univ. Ferrara 54, 335–347 (2008). https://doi.org/10.1007/s11565-008-0051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-008-0051-3

Keywords

Mathematics Subject Classification (2000)

Navigation