Skip to main content
Log in

Peritonealdialyselösungen – differenzierte Therapie und klinische Konsequenzen

Peritoneal dialysis solutions – differential therapy and clinical consequences

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Peritonealdialyselösungen sind in ihrer herkömmlichen Zusammensetzung aufgrund ihres niedrigen pH-Wertes, der hohen Osmolalität und ihrem hohen Gehalt an Glukose und dessen Degradationsprodukten, die wiederum zur vermehrten AGE-Bildung führen, bioinkompatibel. Alternative osmotische Agenzien wie Icodextrin und aminosäurenhaltige PDL können für jeweils einen Wechsel pro Tag verwendet werden und können damit Glukose als Agens nicht vollständig ersetzen. In Mehrkammer-Beuteln sterilisierte glukosehaltige Peritonealdialyselösungen haben aufgrund ihres stark reduzierten Anteils an GDPs in vitro und in vivo Biokompatibilitätsvorteile gezeigt und können als neuer Goldstandard in der Peritonealdialyse bezeichnet werden. Des weiteren birgt die Reduktion des Natriumgehaltes in PD-Lösungen die Chance Blutdruckverhalten und Körpergewicht bei volumenexpandierten PD-Patienten zu reduzieren. Damit könnte es zur einer reduzierten kardiovaskulären Morbidität und Mortalität kommen.

Abstract

Conventional peritoneal dialysis (PD) solutions are bioincompatible due to their low pH, high osmolality and high glucose content, as well as their degradation products which can lead to advanced glycosylation end-product production. Alternative osmotic agents such as icodextrin and amino acid containing solutions can only be used for one exchange per day and are thus not able to fully replace glucose as the osmotic agent. Glucose solutions sterilized in multi-chambered bags are more biocompatible than standard solutions due to their very low content of glucose degradation products, and can be viewed as the new gold standard in PD treatment. Furthermore, low sodium containing PD fluids may help to reduce blood pressure and body weight in volume expanded patients and contribute to a reduction in cardiovascular morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Williams JD, Craig KJ, Topley N et al. (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13: 470–479

    PubMed  Google Scholar 

  2. Davies SJ, Phillips L, Naish PF, Russell GI (2001) Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 12: 1046–1051

    PubMed  Google Scholar 

  3. Kjellstrand P, Martinson E, Wieslander A, Holmquist B (1995) Development of toxic degradation products during heat sterilization of glucose-containing fluids for peritoneal dialysis: influence of time and temperature. Perit Dial Int 15: 26–32

    PubMed  Google Scholar 

  4. Martinson E, Wieslander A, Kjellstrand P, Boberg U (1992) Toxicity of heat sterilized peritoneal dialysis fluids is derived from degradation of glucose. ASAIO J 38: M370–M372

    Article  PubMed  Google Scholar 

  5. Martis L, Henderson LW (1997) Impact of terminal heat sterilization on the quality of peritoneal dialysis solutions. Blood Purif 15: 54–60

    PubMed  Google Scholar 

  6. Henderson IS, Couper IA, Lumsden A (1986) Potentially irritant glucose metabolites in unused CAPD fluid. In: Maher JF, Winchester JF (eds) Frontiers in Peritoneal Dialysis. Field, Rich and Associates, Inc., New York, pp 261–264

  7. Henderson IS, Couper IA, Lumsden A (1986) The effect of shelf life of peritoneal dialysis fluids on ultrafiltration in CAPD. In: La Greca G (ed) Peritoneal dialysis. Wichtig, Milan pp 85–86

  8. Wieslander AP, Andren AH, Nilsson Thorell C et al. (1995) Are aldehydes in heat-sterilized peritoneal dialysis fluids toxic in vitro? Perit Dial Int 15: 348–352

    PubMed  Google Scholar 

  9. Wieslander AP, Kjellstrand PT, Rippe B (1995) Heat sterilization of glucose-containing fluids for peritoneal dialysis: biological consequences of chemical alterations. Perit Dial Int 15: S52–9

    PubMed  Google Scholar 

  10. Cooker LA, Luneburg P, Faict D et al. (1997) Reduced glucose degradation products in bicarbonate/lactate- buffered peritoneal dialysis solutions produced in two-chambered bags. Perit Dial Int 17: 373–378

    PubMed  Google Scholar 

  11. Sundaram S, Cendoroglo M, Cooker LA et al. (1997) Effect of two-chambered bicarbonate lactate-buffered peritoneal dialysis fluids on peripheral blood mononuclear cell and polymorphonuclear cell function in vitro. Am J Kidney Dis 30: 680–689

    PubMed  Google Scholar 

  12. Wieslander AP, Nordin MK, Kjellstrand PT, Boberg UC (1991) Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int 40: 77–79

    PubMed  Google Scholar 

  13. Jonasson P, Braide M (1998) Acute in vivo toxicity of heat-sterilized glucose peritoneal dialysis fluids to rat peritoneal macrophages. Perit Dial Int 18: 376–381

    PubMed  Google Scholar 

  14. Wieslander AP, Nordin MK, Martinson E et al. (1993) Heat sterilized PD-fluids impair growth and inflammatory responses of cultured cell lines and human leukocytes. Clin Nephrol 39: 343–348

    PubMed  Google Scholar 

  15. Witowski J, Korybalska K, Wisniewska J et al. (2000) Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol 11: 729–739

    PubMed  Google Scholar 

  16. Witowski J, Wisniewska J, Korybalska K et al. (2001) Prolonged Exposure to Glucose Degradation Products Impairs Viability and Function of Human Peritoneal Mesothelial Cells. J Am Soc Nephrol 12: 2434–2441

    PubMed  Google Scholar 

  17. Jonasson P, Bagge U, Wieslander A, Braide M (1996) Heat-sterilized PD fluid blocks leukocyte adhesion and increases flow velocity in rat peritoneal venules. Perit Dial Int (Suppl 1) 16: S137–140

    Google Scholar 

  18. Musi B, Carlsson O, Rippe A et al. (1998) Effects of acidity, glucose degradation products, and dialysis fluid buffer choice on peritoneal solute and fluid transport in rats. Perit Dial Int 18: 303–310

    PubMed  Google Scholar 

  19. Lamb EJ, Cattell WR, Dawnay AB (1995) In vitro formation of advanced glycation end products in peritoneal dialysis fluid. Kidney Int 47: 1768–1774

    PubMed  Google Scholar 

  20. Niwa H, Takeda A, Wakai M et al. (1998) Accelerated formation of N epsilon-(carboxymethyl) lysine, an advanced glycation end product, by glyoxal and 3-deoxyglucosone in cultured rat sensory neurons. Biochem Biophys Res Commun 248: 93–97

    Article  PubMed  Google Scholar 

  21. Schalkwijk CG, Posthuma N, ten Brink HJ et al. (1999) Induction of 1,2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids. Perit Dial Int 19: 325–333

    PubMed  Google Scholar 

  22. Wells Knecht KJ, Brinkmann E, Wells Knecht MC et al. (1996) New biomarkers of Maillard reaction damage to proteins. Nephrol Dial Transplant (Suppl 5) 11: 41–47

    Google Scholar 

  23. Nakayama M, Kawaguchi Y, Yamada K et al. (1997) Immunohistochemical detection of advanced glycosylation end- products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int 51: 182–186

    PubMed  Google Scholar 

  24. Honda K, Nitta K, Horita S et al. (1999) Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant 14: 1541–1549

    Article  PubMed  Google Scholar 

  25. Schwenger V, Morath C, Salava A et al. (2006) Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. J Am Soc Nephrol 17: 199–207

    Article  PubMed  Google Scholar 

  26. Schwenger V (2006) GDP and AGE receptors: mechanisms of peritoneal damage. Contrib Nephrol 150: 77–83

    PubMed  Google Scholar 

  27. De Vriese AS, Flyvbjerg A, Mortier S et al. (2003) Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol 14: 2109–2118

    PubMed  Google Scholar 

  28. De Vriese AS, Tilton RG, Mortier S, Lameire NH (2006) Myofibroblast transdifferentiation of mesothelial cells is mediated by rage and contributes to peritoneal fibrosis in uraemia. Nephrol Dial Transplant

  29. Wieslander A, Linden T (1996) Glucose degradation and cytotoxicity in PD fluids. Perit Dial Int (Suppl 1) 16: S114–8

    Google Scholar 

  30. Zimmeck T, Tauer A, Fuenfrocken M, Pischetsrieder M (2002) How to reduce 3-deoxyglucosone and acetaldehyde in peritoneal dialysis fluids. Perit Dial Int 22: 350–356

    PubMed  Google Scholar 

  31. Tauer A, Zhang X, Schaub TP et al. (2003) Formation of advanced glycation end products during CAPD. Am J Kidney Dis (3 Suppl 2) 41: S57–S60

    Google Scholar 

  32. Erixon M, Wieslander A, Linden T et al. (2006) How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 26: 490–497

    PubMed  Google Scholar 

  33. Tauer A, Knerr T, Niwa T et al. (2001) In Vitro Formation of N(epsilon)-(Carboxymethyl)lysine and Imidazolones under Conditions Similar to Continuous Ambulatory Peritoneal Dialysis. Biochem Biophys Res Commun 280: 1408–1414

    Article  PubMed  Google Scholar 

  34. Feriani M (1997) Bicarbonate-buffered CAPD solutions: from clinical trials to clinical practice. Perit Dial Int (Suppl 2) 17: S51–5

    Google Scholar 

  35. Feriani M, Carobi C, La Greca G et al. (1997) Clinical experience with a 39 mmol/L bicarbonate-buffered peritoneal dialysis solution [see comments]. Perit Dial Int 17: 17–21

    PubMed  Google Scholar 

  36. Feriani M, Kirchgessner J, La Greca G, Passlick-Deetjen J (1998) Randomized long-term evaluation of bicarbonate-buffered CAPD solution. Kidney Int 54: 1731–1738

    Article  PubMed  Google Scholar 

  37. Traynor JP, Geddes CC, Walbaum D et al. (1998) CAPD as fluid replacement in a patient with short-bowel syndrome. Nephrol Dial Transplant 13: 2947–2948

    Article  PubMed  Google Scholar 

  38. Mactier RA, Sprosen TS, Gokal R et al. (1998) Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int 53: 1061–1067

    Article  PubMed  Google Scholar 

  39. Jones S, Holmes CJ, Krediet RT et al. (2001) Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int 59: 1529–1538

    Article  PubMed  Google Scholar 

  40. Williams JD, Topley N, Craig KJ et al. (2004) The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66: 408–418

    Article  PubMed  Google Scholar 

  41. Rippe B, Simonsen O, Heimburger O et al. (2001) Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 59: 348–357

    Article  PubMed  Google Scholar 

  42. Montenegro J, Saracho RM, Martinez IM et al. (2006) Long-term clinical experience with pure bicarbonate peritoneal dialysis solutions. Perit Dial Int 26: 89–94

    PubMed  Google Scholar 

  43. Jörres A, Bender TO, Finn A et al. (1998) Biocompatibility and buffers: effect of bicarbonate-buffered peritoneal dialysis fluids on peritoneal cell function. Kidney Int 54: 2184–2193

    Article  PubMed  Google Scholar 

  44. Topley N, Kaur D, Petersen MM et al. (1996) Biocompatibility of bicarbonate buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney Int 49: 1447–1456

    PubMed  Google Scholar 

  45. Topley N, Kaur D, Petersen MM et al. (1996) In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophil function. J Am Soc Nephrol 7: 218–224

    PubMed  Google Scholar 

  46. Mackenzie RK, Jones S, Moseley A et al. (2000) In vivo exposure to bicarbonate/lactate- and bicarbonate-buffered peritoneal dialysis fluids improves ex vivo peritoneal macrophage function. Am J Kidney Dis 35: 112–121

    PubMed  Google Scholar 

  47. Mortier S, De Vriese AS, McLoughlin RM et al. (2003) Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J Am Soc Nephrol 14: 1296–1306

    Article  PubMed  Google Scholar 

  48. Mortier S, Lameire NH, De Vriese AS (2004) The effects of peritoneal dialysis solutions on peritoneal host defense. Perit Dial Int 24: 123–138

    PubMed  Google Scholar 

  49. Mortier S, Faict D, Schalkwijk CG et al. (2004) Long-term exposure to new peritoneal dialysis solutions: Effects on the peritoneal membrane. Kidney Int 66: 1257–1265

    Article  PubMed  Google Scholar 

  50. Haas S, Schmitt CP, Arbeiter K et al. (2003) Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol 14: 2632–2638

    Article  PubMed  Google Scholar 

  51. Zeier M, Schwenger V, Deppisch R et al. (2003) Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int 63: 298–305

    Article  PubMed  Google Scholar 

  52. Lee HY, Park HC, Seo BJ et al. (2005) Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit Dial Int 25: 248–255

    PubMed  Google Scholar 

  53. Lee HY, Choi HY, Park HC et al. (2006) Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant 21: 2893–2899

    Article  PubMed  Google Scholar 

  54. Rippe B, Zakaria E, Carlsson O (1996) Theoretical analysis of osmotic agents in peritoneal dialysis. What size is an ideal osmotic agent? Perit Dial Int (Suppl 1) 16: S97–103

    Google Scholar 

  55. Bredie SJ, Bosch FH, Demacker PN et al. (2001) Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Perit Dial Int 21: 275–281

    PubMed  Google Scholar 

  56. Dawnay AB, Millar DJ (1997) Glycation and advanced glycation end-product formation with icodextrin and dextrose [see comments]. Perit Dial Int 17: 52–58

    PubMed  Google Scholar 

  57. Wilkie ME, Plant MJ, Edwards L, Brown CB (1997) Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival. Perit Dial Int 17: 84–87

    PubMed  Google Scholar 

  58. Konings CJ, Schalkwijk CG, Van Der Sande FM et al. (2005) Influence of icodextrin on plasma and dialysate levels of N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine. Perit Dial Int 25: 591–595

    PubMed  Google Scholar 

  59. Gotloib L, Wajsbrot V, Shostak A (2002) Mesothelial dysplastic changes and lipid peroxidation induced by 7.5% icodextrin. Nephron 92: 142–155

    Article  PubMed  Google Scholar 

  60. Gotloib L, Wajsbrot V, Shostak A (2003) Icodextrin-induced lipid peroxidation disrupts the mesothelial cell cycle engine. Free Radic Biol Med 34: 419–428

    Article  PubMed  Google Scholar 

  61. Goldsmith D, Jayawardene S, Sabharwal N, Cooney K (2000) Allergic reactions to the polymeric glucose-based peritoneal dialysis fluid icodextrin in patients with renal failure. Lancet 355: 897

    Article  PubMed  Google Scholar 

  62. Tintillier M, Pochet JM, Christophe JL et al. (2002) Transient sterile chemical peritonitis with icodextrin: clinical presentation, prevalence, and literature review. Perit Dial Int 22: 534–537

    PubMed  Google Scholar 

  63. Martis L, Patel M, Giertych J et al. (2005) Aseptic peritonitis due to peptidoglycan contamination of pharmacopoeia standard dialysis solution. Lancet 365: 588–594

    PubMed  Google Scholar 

  64. Rozenberg R, Magen E, Weissgarten J, Korzets Z (2006) Icodextrin-induced sterile peritonitis: the Israeli experience. Perit Dial Int 26: 402–405

    PubMed  Google Scholar 

  65. Bruno M, Gabella P, Ramello A (2000) Use of amino acids in peritoneal dialysis solutions. Perit Dial Int (Suppl 2) 20: S166–S171

    Google Scholar 

  66. Steinhauer HB, Lubrich-Birkner I, Kluthe R et al. (1992) Effect of amino acid based dialysis solution on peritoneal permeability and prostanoid generation in patients undergoing continuous ambulatory peritoneal dialysis. Am J Nephrol 12: 61–67

    PubMed  Google Scholar 

  67. Reimann D, Dachs D, Meye C, Gross P (2004) Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit Dial Int 24: 378–384

    PubMed  Google Scholar 

  68. Chan TM, Leung JK, Sun Y et al. (2003) Different effects of amino acid-based and glucose-based dialysate from peritoneal dialysis patients on mesothelial cell ultrastructure and function. Nephrol Dial Transplant 18: 1086–1094

    Article  PubMed  Google Scholar 

  69. Zareie M, van Lambalgen AA, ter Wee PM et al. (2005) Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit Dial Int 25: 58–67

    PubMed  Google Scholar 

  70. le Poole CY, Welten AG, Weijmer MC et al. (2005) Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int (Suppl 3) 25: S64–S68

    Google Scholar 

  71. le Poole CY, van Ittersum FJ, Weijmer MC et al. (2004) Clinical effects of a peritoneal dialysis regimen low in glucose in new peritoneal dialysis patients: a randomized crossover study. Adv Perit Dial 20: 170–176

    PubMed  Google Scholar 

  72. Martikainen TA, Teppo AM, Gronhagen-Riska C, Ekstrand AV (2005) Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit Dial Int 25: 453–460

    PubMed  Google Scholar 

  73. Nilsson Thorell CB, Muscalu N, Andren AH et al. (1993) Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit Dial Int 13: 208–213

    PubMed  Google Scholar 

  74. Linden T, Forsback G, Deppisch R et al. (1998) 3-Deoxyglucosone, a promoter of advanced glycation end products in fluids for peritoneal dialysis. Perit Dial Int 18: 290–293

    PubMed  Google Scholar 

  75. Linden T, Cohen A, Deppisch R et al. (2002) 3,4-Dideoxyglucosone-3-ene (3,4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis. Kidney Int 62: 697–703

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma hin: Consultant für Fresenius Medical Care Deutschland GmbH. Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jörres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, T., Witowski, J. & Jörres, A. Peritonealdialyselösungen – differenzierte Therapie und klinische Konsequenzen. Nephrologe 2, 100–106 (2007). https://doi.org/10.1007/s11560-006-0065-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-006-0065-8

Schlüsselwörter

Keywords

Navigation