Skip to main content
Log in

A single standard for memory; the case for reconsolidation

  • Published:
Debates in Neuroscience

Abstract

For over a hundred years, the predominant view of how the brain stores new memories suggested that a consolidation process stabilizes memories over time until they are fixed in the brain. However, in contradiction to this assumption, there has accumulated a significant amount of empirical demonstrations showing that memories, or parts of them, need to be restabilized after their expression in a manner analogous to the initial stabilization process. This process is now called reconsolidation. These findings have generated a great deal of excitement but have also provoked considerable criticism. In this paper, I will address the issues and controversies surrounding reconsolidation, restating the accepted neurobiological framework of memory consolidation and discussing the empirical evidence for the existence of a consolidation period. Applying the same standards used by proponents of the memory consolidation account to infer the existence of the memory consolidation processes, I will conclude that a reconsolidation process must exist as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alberini CM (2005) Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28:51–56

    PubMed  CAS  Google Scholar 

  2. Alberini CM, Milekic MH, Tronel S (2006) Mechanisms of memory stabilization and de-stabilization. Cell Mol Life Sci 63:999–1008

    PubMed  CAS  Google Scholar 

  3. Anokhin KV, Tiunova AA, Rose SP (2002) Reminder effects—reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci 15:1759–1765

    PubMed  Google Scholar 

  4. Bailey CH, Kandel ER (1993) Structural changes accompanying memory storage. Annu Rev Physiol 55:397–426

    PubMed  CAS  Google Scholar 

  5. Bailey CH, Bartsch D, Kandel ER (1996) Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci U S A 93:13445–13452

    PubMed  CAS  Google Scholar 

  6. Bartlett FC (1932) Remembering. Cambridge University Press, Cambridge

    Google Scholar 

  7. Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118

    PubMed  CAS  Google Scholar 

  8. Berman DE, Dudai Y (2001) Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291:2417–2419

    PubMed  CAS  Google Scholar 

  9. Biedenkapp JC, Rudy JW (2004) Context memories and reactivation: constraints on the reconsolidation hypothesis. Behav Neurosci 118:956–964

    PubMed  Google Scholar 

  10. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8:229–242

    PubMed  CAS  Google Scholar 

  11. Bouton ME (1993) Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol Bull 114:80–99

    PubMed  CAS  Google Scholar 

  12. Bozon B, Davis S, Laroche S (2003) A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40:695–701

    PubMed  CAS  Google Scholar 

  13. Cahill L, McGaugh JL, Weinberger NM (2001) The neurobiology of learning and memory: some reminders to remember. Trends Neurosci 24:578–581

    PubMed  CAS  Google Scholar 

  14. Cammarota M, Bevilaqua LR, Medina JH, Izquierdo I (2004) Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn Mem 11:572–578

    PubMed  Google Scholar 

  15. Child FM, Epstein HT, Kuzirian AM, Alkon DL (2003) Memory reconsolidation in hermissenda. Biol Bull 205:218–219

    PubMed  CAS  Google Scholar 

  16. Davis HP, Squire LR (1984) Protein synthesis and memory. A review. Psychol Bull 96:518–559

    PubMed  CAS  Google Scholar 

  17. Davis M (1997) Neurobiology of fear responses: the role of the amygdala. J Neuropsychiatry Clin Neurosci 9:382–402

    PubMed  CAS  Google Scholar 

  18. Dawson RG, McGaugh JL (1969) Electroconvulsive shock effects on a reactivated memory trace: further examination. Science 166:525–527

    PubMed  CAS  Google Scholar 

  19. de Hoz L, Martin SJ, Morris RG (2004) Forgetting, reminding, and remembering: the retrieval of lost spatial memory. PLoS Biol 2:1233–1242

    Google Scholar 

  20. De Vietti T, Holiday JH (1972) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace: a replication. Psychon Sci 29:137–138

    Google Scholar 

  21. Debiec J, Ledoux JE (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129:267–272

    PubMed  CAS  Google Scholar 

  22. Debiec J, LeDoux JE, Nader K (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36:527–538

    PubMed  CAS  Google Scholar 

  23. Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    PubMed  Google Scholar 

  24. Dudai Y (2006) Reconsolidation: the advantage of being refocused. Curr Opin Neurobiol 16:174–178

    PubMed  CAS  Google Scholar 

  25. Dudai Y, Morris R (2000) To consolidate or not to consolidate: what are the questions? In: Bolhius J (ed) Brain, perception, memory. Advances in cognitive sciences. Oxford University Press, Oxford, pp 149–162

    Google Scholar 

  26. Dudai Y, Eisenberg M (2004) Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44:93–100

    PubMed  CAS  Google Scholar 

  27. Duncan CP (1949) The retroactive effect of electroconvulsive shock. J Comp Physiol Psychol 42:32–44

    PubMed  CAS  Google Scholar 

  28. Duvarci S, Nader K (2004) Characterization of fear memory reconsolidation. J Neurosci 24:9269–9275

    PubMed  CAS  Google Scholar 

  29. Duvarci S, Mamou CB, Nader K (2006) Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. Eur J Neurosci 24:249–260

    PubMed  Google Scholar 

  30. Ebbinghaus M (1885) Über das Gedächtnis. K.Buehler, Leipzig

  31. Eisenberg M, Kobilo T, Berman DE, Dudai Y (2003) Stability of retrieved memory: inverse correlation with trace dominance. Science 301:1102–1104

    PubMed  CAS  Google Scholar 

  32. Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J (2004) Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 24:1962–1966

    PubMed  CAS  Google Scholar 

  33. Flexner LB, Flexner JB, Stellar E (1965) Memory and cerebral protein synthesis in mice as affected by graded amounts of puromycin. Exp Neurol 13:264–272

    PubMed  CAS  Google Scholar 

  34. Fonseca R, Nagerl UV, Bonhoeffer T (2006) Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nat Neurosci 9:478–480

    PubMed  CAS  Google Scholar 

  35. Fonseca R, Nagerl UV, Morris RG, Bonhoeffer T (2004) Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44:1011–1020

    PubMed  CAS  Google Scholar 

  36. Glickman S (1961) Perseverative neural processes and consolidation of the memory trace. Psychol Bull 58:218–233

    PubMed  CAS  Google Scholar 

  37. Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and short of long-term memory—a molecular framework. Nature 322:419–422

    PubMed  CAS  Google Scholar 

  38. Gold PE, King RA (1972) Amnesia: tests of the effect of delayed footshock-electroconvulsive shock pairings. Physiol Behav 8:797–800

    PubMed  CAS  Google Scholar 

  39. Gordon WC (1977) Similarities of recently acquired and reactivated memories in interference. Am J Psychol 90:231–242

    Google Scholar 

  40. Gordon WC (1977) Susceptibility of a reactivated memory to the effects of strychnine: a time-dependent phenomenon. Physiol Behav 18:95–99

    PubMed  CAS  Google Scholar 

  41. Gordon WC (1981) Mechanisms of cue-induced retention enhancements. In: Spear NE, Kleim JA (eds) Information processing in animals: memory mechanisms. Erlbaum, Hillsdale, pp 319–339

    Google Scholar 

  42. Gordon WC, Spear NE (1973) The effects of strychnine on recently acquired and reactivated passive avoidance memories. Physiol Behav 10:1071–1075

    PubMed  CAS  Google Scholar 

  43. Gordon WC, Spear NE (1973) Effect of reactivation of a previously acquired memory on the interaction between memories in the rat. J Exp Psychol 99:349–355

    PubMed  CAS  Google Scholar 

  44. Gruest N, Richer P, Hars B (2004) Memory consolidation and reconsolidation in the rat pup require protein synthesis. J Neurosci 24:10488–10492

    PubMed  CAS  Google Scholar 

  45. Guzowski JF, McGaugh JL (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci U S A 94:2693–2698

    PubMed  CAS  Google Scholar 

  46. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  47. Hernandez PJ, Sadeghian K, Kelley AE (2002) Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 5:1327–1331

    PubMed  CAS  Google Scholar 

  48. Horne CA, Rodriguez WA, Wright TP, Padilla JL (1997) Time-dependent effects of fructose on the modulation of a reactivated memory. Prog Neuropsychopharmacol Biol Psychiatry 21:649–658

    PubMed  CAS  Google Scholar 

  49. Hupbach A, Gomez R, Hardt O, Nadel L (2007) Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn Mem 14(1):47–53

    PubMed  Google Scholar 

  50. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    PubMed  CAS  Google Scholar 

  51. Kelly A, Laroche S, Davis S (2003) Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 23:5354–5360

    PubMed  CAS  Google Scholar 

  52. Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355

    PubMed  CAS  Google Scholar 

  53. Kohlenberg R, Trabasso TOM (1968) Recovery of a conditioned emotional response after one or two electroconvulsive shocks. J Comp Physiol Psychol 65(2):270–273

    PubMed  CAS  Google Scholar 

  54. Lattal KM, Abel T (2001) Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J Neurosci 21:5773–5780

    PubMed  CAS  Google Scholar 

  55. Lattal KM, Abel T (2004) Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time. Proc Natl Acad Sci U S A 101:4667–4672

    PubMed  CAS  Google Scholar 

  56. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    PubMed  CAS  Google Scholar 

  57. Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843

    PubMed  CAS  Google Scholar 

  58. Lee JL, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801

    PubMed  CAS  Google Scholar 

  59. Lewis DJ (1979) Psychobiology of active and inactive memory. Psychol Bull 86:1054–1083

    PubMed  CAS  Google Scholar 

  60. Lewis DJ, Bregman NJ (1973) Source of cues for cue-dependent amnesia in rats. J Comp Physiol Psychol 85:421–426

    PubMed  CAS  Google Scholar 

  61. Lewis DJ, Bregman NJ, Mahan JJJ (1972) Cue-dependent amnesia in rats. J Comp Physiol Psychol 2:243–247

    Google Scholar 

  62. Mactutus CF, Riccio DC, Ferek JM (1979) Retrograde amnesia for old (reactivated) memory: some anomalous characteristics. Science 204:1319–1320

    PubMed  CAS  Google Scholar 

  63. Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285:1870–1874

    PubMed  CAS  Google Scholar 

  64. Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931

    PubMed  CAS  Google Scholar 

  65. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    PubMed  CAS  Google Scholar 

  66. McGaugh JL (1966) Time-dependent processes in memory storage. Science 153:1351–1358

    PubMed  CAS  Google Scholar 

  67. McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251

    PubMed  CAS  Google Scholar 

  68. McGaugh JL (2004) Memory reconsolidation hypothesis revived but restrained: theoretical comment on Biedenkapp and Rudy (2004). Behav Neurosci 118:1140–1142

    PubMed  Google Scholar 

  69. McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    PubMed  CAS  Google Scholar 

  70. McGaugh JL, Krivanek JA (1970) Strychnine effects on discrimination learning in mice: effects of dose and time of administration. Physiol Behav 5:1437–1442

    PubMed  CAS  Google Scholar 

  71. Milekic MH, Alberini CM (2002) Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36:521–525

    PubMed  CAS  Google Scholar 

  72. Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884

    PubMed  CAS  Google Scholar 

  73. Miller RR, Springer AD (1973) Amnesia, consolidation, and retrieval. Psychol Rev 80:69–79

    PubMed  CAS  Google Scholar 

  74. Miller RR, Marlin NA (1984) The physiology and semantics of consolidation: of mice and men. In: Weingartner H, Parker ES (eds) Memory consolidation: psychobiology of cognition. Lawrence Erlbaum Associates, Hillsdale, pp 85–109

    Google Scholar 

  75. Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    PubMed  CAS  Google Scholar 

  76. Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160:203–204

    Google Scholar 

  77. Morris RG (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356:1453–1465

    PubMed  CAS  Google Scholar 

  78. Myers KM, Davis M (2002) Systems-level reconsolidation: reengagement of the hippocampus with memory reactivation. Neuron 36:340–343

    PubMed  CAS  Google Scholar 

  79. Nader K (2003) Memory traces unbound. Trends Neurosci 26:65–72

    PubMed  CAS  Google Scholar 

  80. Nader K, Wang SH (2006) Fading in. Learn Mem 13:530–535

    PubMed  Google Scholar 

  81. Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    PubMed  CAS  Google Scholar 

  82. Nader K, Hardt O, Wang SH (2005) Response to Alberini: right answer, wrong question. Trends Neurosci 28:346–347

    PubMed  CAS  Google Scholar 

  83. Pavlov IP (1927) Conditioned reflexes. Dover, New York

    Google Scholar 

  84. Pederia ME, Maldonado H (2003) Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38:863–869

    Google Scholar 

  85. Pedreira ME, Perez-Cuesta LM, Maldonado H (2002) Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J Neurosci 22:8305–8311

    PubMed  CAS  Google Scholar 

  86. Power AE, Berlau DJ, McGaugh JL, Steward O (2006) Anisomycin infused into the hippocampus fails to block “reconsolidation” but impairs extinction: the role of re-exposure duration. Learn Mem 13:27–34

    PubMed  CAS  Google Scholar 

  87. Prado-Alcala RA, Diaz del Guante MA, Garin-Aguilar ME, Diaz-Trujillo A, Quirarte GL, McGaugh JL (2006) Amygdala or hippocampus inactivation after retrieval induces temporary memory deficit. Neurobiol Learn Mem 86:144–149

    PubMed  Google Scholar 

  88. Przybyslawski J, Sara SJ (1997) Reconsolidation of memory after its reactivation. Behav Brain Res 84:241–246

    PubMed  CAS  Google Scholar 

  89. Quartermain D, McEwen BS (1970) Temporal characteristics of amnesia induced by protein synthesis inhibitor: determination by shock level. Nature 228:677–678

    PubMed  CAS  Google Scholar 

  90. Quartermain D, McEwen BS, Azmitia EC Jr (1970) Amnesia produced by electroconvulsive shock or cycloheximide: conditions for recovery. Science 169:683–686

    PubMed  CAS  Google Scholar 

  91. Quartermain D, McEwen BS, Azmitia EC Jr (1972) Recovery of memory following amnesia in the rat and mouse. J Comp Physiol Psychol 79:360–370

    PubMed  CAS  Google Scholar 

  92. Randt CT, Barnett BM, McEwen BS, Quartermain D (1971) Amnesic effects of cycloheximide on two strains of mice with different memory characteristics. Exp Neurol 30:467–474

    PubMed  CAS  Google Scholar 

  93. Rescorla RA (1967) Pavlovian conditioning and its proper control procedures. Psychol Rev 74:71–80

    PubMed  CAS  Google Scholar 

  94. Rescorla RA (2000) Experimental extinction. In: Mowrer RR, Klein SB (eds) Contemporary learning theories. Lawrence Erlbaum Associates, Mahwah, pp 119–155

    Google Scholar 

  95. Riccio DC, Millin PM, Bogart AR (2006) Reconsolidation: a brief history, a retrieval view, and some recent issues. Learn Mem 13:536–544

    PubMed  Google Scholar 

  96. Riccio DC, Moody EW, Millin PM (2002) Reconsolidation reconsidered. Integr Physiol Behav Sci 37(4):245–253

    PubMed  Google Scholar 

  97. Rodriguez WA, Horne CA, Padilla JL (1999) Effects of glucose and fructose on recently reactivated and recently acquired memories. Prog Neuropsychopharmacol Biol Psychiatry 23:1285–1317

    PubMed  CAS  Google Scholar 

  98. Rodriguez WA, Rodriguez SB, Phillips MY, Martinez JL Jr (1993) Post-reactivation cocaine administration facilitates later acquisition of an avoidance response in rats. Behav Brain Res 59:125–129

    PubMed  CAS  Google Scholar 

  99. Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604–607

    PubMed  CAS  Google Scholar 

  100. Rose JK, Rankin CH (2006) Blocking memory reconsolidation reverses memory-associated changes in glutamate receptor expression. J Neurosci 26:11582–11587

    PubMed  CAS  Google Scholar 

  101. Rose JK, Kaun KR, Chen SH, Rankin CH (2003) GLR-1, a non-NMDA glutamate receptor homolog, is critical for long-term memory in Caenorhabditis elegans. J Neurosci 23:9595–9599

    PubMed  CAS  Google Scholar 

  102. Routtenberg A, Rekart JL (2005) Post-translational protein modification as the substrate for long-lasting memory. Trends Neurosci 28:12–19

    PubMed  CAS  Google Scholar 

  103. Rudy JW, Biedenkapp JC, Moineau J, Bolding K (2006) Anisomycin and the reconsolidation hypothesis. Learn Mem 13:1–3

    PubMed  CAS  Google Scholar 

  104. Sangha S, Scheibenstock A, Lukowiak K (2003) Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J Neurosci 23:8034–8040

    PubMed  CAS  Google Scholar 

  105. Sara SJ (1973) Recovery from hypoxia and ECS-induced amnesia after a single exposure to training environment. Physiol Behav 10:85–89

    PubMed  CAS  Google Scholar 

  106. Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7:73–84

    PubMed  CAS  Google Scholar 

  107. Sara SJ, Hars B (2006) In memory of consolidation. Learn Mem 13:472–481

    Article  Google Scholar 

  108. Schafe GE, LeDoux JE (2000) Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 20:RC96

    PubMed  CAS  Google Scholar 

  109. Schafe GE, Nader K, Blair HT, LeDoux JE (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24:540–546

    PubMed  CAS  Google Scholar 

  110. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed  CAS  Google Scholar 

  111. Serota RG (1971) Acetoxycycloheximide and transient amnesia in the rat. Proc Natl Acad Sci U S A 68:1249–1250

    PubMed  CAS  Google Scholar 

  112. Shors TJ, Matzel LD (1997) Long-term potentiation: what’s learning got to do with it? Behav Brain Sci 20:597–614; discussion 614–555

    Google Scholar 

  113. Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148

    PubMed  CAS  Google Scholar 

  114. Spear N (1973) Retrieval of memory in animals. Psychol Rev 80:163–194

    Google Scholar 

  115. Spear N, Mueller C (1984) Consolidation as a function of retrieval. In: Weingarten H, Parker E (eds) Memory consolidation: psychobiology of cognition. Laurence Erlbaum Associates, London, pp 111–147

    Google Scholar 

  116. Squire LR (2006) Lost forever or temporarily misplaced? The long debate about the nature of memory impairment. Learn Mem 13:522–529

    PubMed  Google Scholar 

  117. Squire LR, Barondes SH (1972) Variable decay of memory and its recovery in cycloheximide-treated mice. Proc Natl Acad Sci U S A 69:1416–1420

    PubMed  CAS  Google Scholar 

  118. Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol 5:169–177

    PubMed  CAS  Google Scholar 

  119. Stollhoff N, Menzel R, Eisenhardt D (2005) Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera). J Neurosci 25:4485–4492

    PubMed  CAS  Google Scholar 

  120. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795

    PubMed  CAS  Google Scholar 

  121. Thompson RF, Krupa DJ (1994) Organization of memory traces in the mammalian brain. Annu Rev Neurosci 17:519–549

    PubMed  CAS  Google Scholar 

  122. Torras-Garcia M, Lelong J, Tronel S, Sara SJ (2005) Reconsolidation after remembering an odor-reward association requires NMDA receptors. Learn Mem 12:18–22

    PubMed  Google Scholar 

  123. Tronson NC, Wiseman SL, Olausson P, Taylor JR (2006) Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat Neurosci 9:167–169

    PubMed  CAS  Google Scholar 

  124. Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34:289–300

    PubMed  CAS  Google Scholar 

  125. Valjent E, Aubier B, Corbille AG, Brami-Cherrier K, Caboche J, Topilko P, Girault JA, Herve D (2006) Plasticity-associated gene Krox24/Zif268 is required for long-lasting behavioral effects of cocaine. J Neurosci 26:4956–4960

    PubMed  CAS  Google Scholar 

  126. Vianna MR, Szapiro G, McGaugh JL, Medina JH, Izquierdo I (2001) Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc Natl Acad Sci U S A 98:12251–12254

    PubMed  CAS  Google Scholar 

  127. von Hertzen LS, Giese KP (2005) Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J Neurosci 25:1935–1942

    Google Scholar 

  128. Walker MP, Brakefield T, Hobson JA, Stickgold R (2003) Dissociable stages of human memory consolidation and reconsolidation. Nature 425:616–620

    PubMed  CAS  Google Scholar 

  129. Wang SH, Ostlund SB, Nader K, Balleine BW (2005) Consolidation and reconsolidation of incentive learning in the amygdala. J Neurosci 25:830–835

    PubMed  Google Scholar 

  130. White NM, McDonald RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem 77:125–184

    PubMed  Google Scholar 

  131. Yin JCP, Del Vecchio M, Zhou H, Tully T (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in drosophilia. Cell 81:107–115

    PubMed  CAS  Google Scholar 

  132. Young AG, Galluscio EH (1971) Recovery from ECS-produced amnesia. Psychon Sci 22:149–151

    Google Scholar 

  133. Zinkin S, Miller AJ (1967) Recovery of memory after amnesia induced by electroconvulsive shock. Science 155:102–104

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research; Natural Sciences and Engineering Research Council of Canada; Canadian Foundation for Innovation; and The Volkswagen, and EJLB Foundation grants. The author is a William Dawson chair Alfred P. Sloan Fellow, EJLB Scholar, and Canadian Institutes of Health Research New Investigator. My thanks to the “Fondation des Treilles” that supported me for part of the duration it took to write this manuscript. My deep thanks to Olli Hardt for his invaluable help in the discussion and preparation of the manuscript and for challenging me to make the manuscript better. My thanks to Cathy Rankin and Paul Frankland, Evan Balaban and Joseph LeDoux for their comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Nader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nader, K. A single standard for memory; the case for reconsolidation. Debates in Neuroscience 1, 2–16 (2007). https://doi.org/10.1007/s11559-007-9005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11559-007-9005-7

Keywords

Navigation