Skip to main content

Advertisement

Log in

Controlled surface fire for improving yields of Morchella importuna

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Fire is known to benefit morel production, but the details of how or why remain unknown. To investigate the effects of fire treatment on the occurrence and yield of the morel Morchella importuna in semi-artificial, field-based setups, we designed surface fire treatments using different quantities of burning material (dry Pinaceae twigs). Developmental stages of M. importuna, including the formation and degeneration of mycelium, formation of ascocarp primordia, ascocarp initials, and mature ascocarps, were evaluated in square-meter quadrats in field experiments. Morel yields and soil were compared. Fire treatments corresponding to 1.7 and 2.5 kg burning material/m2 resulted in clearly increased levels of soil minerals and nutrients, and significantly increased formation of ascocarp primordial and morel yields. None of the fire treatments had a significant effect on the germination rate of primordia. Fire treatments corresponding to 0.8 kg burning material/m2 did not increase morel yield. Surface fires increased the suitability of soils for the growth and productivity of ascocarps of M. importuna if sufficient burning material is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham J (2013) Organic carbon estimations in soils: analytical protocols and their implications. Rubber Sci 26:45–54

    CAS  Google Scholar 

  • Buscot F (1989) Field observations on growth and development of Morchella rotunda and Mitrophora semilibera in relation to forest soil temperature. Can J Bot 67:589–593

    Article  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Methods of soil analysis. American Society of Agronomy, Wisconsin

    Google Scholar 

  • Brzostowski A, Bielawski L, Orlikowska A, Plichta S, Falandysz J (2009) Instrumental analysis of metals profile in Poison Pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chem Anal (Warsaw) 54:1297–1308

    CAS  Google Scholar 

  • Claridge AW, Trappe JM, Hansen K (2009) Do fungi have a role as soil stabilizers and remediators after forest fire? Forest Ecol Manag 257:1063–1069

    Article  Google Scholar 

  • Du XH, Zhao Q, O’Donnell K, Rooney AP, Yang ZL (2012) Multigene molecular phylogenetics reveals true morels (Morchella) are especially species-rich in China. Fungal Genet Biol 49:455–469

    Article  CAS  PubMed  Google Scholar 

  • Du XH, Zhao Q, Yang ZL (2014) Diversity, evolutionary history and cultivation of morels: a review. Mycosystema 33:183–197 (in Chinese)

    CAS  Google Scholar 

  • Du XH, Zhao Q, Xia EH, Gao LZ, Richard F, Yang ZL (2017) Mixed-reproductive strategies, competitive mating-type distribution and life cycle of fourteen black morel species. Sci Rep UK 7:1493

    Article  Google Scholar 

  • Fan ZH, Zheng LY (2013) A method for Morchella cultivation with wheat interplanting. Patent for Invention in China, ZL201310113092.X

  • Goldway M, Amir R, Goldberg D, Hadar Y, Levanon D (2000) Morchella conica exhibiting a long fruiting season. Mycol Res 104:1000–1004

    Article  Google Scholar 

  • Greene DF, Hesketh M, Pounden E (2010) Emergence of morel (Morchella) and pixie cup (Geopyxis carbonaria) ascocarps in response to the intensity of forest floor combustion during a wildfire. Mycologia 102:766–773

    Article  PubMed  Google Scholar 

  • He PX, Liu W, Cai YL, He XS (2015) Strain identification and phylogenetic analysis of cultivated and wild strains of Morchella belonging to Elata Clade in China. J Zhengzhou Univ Light Indust (Nat Sci) 30:26–29 (in Chinese)

    Google Scholar 

  • Kawagishi H, Hamajima K, Takanami R, Nakamura T, Sato Y, Akiyama Y, Sano M, Tanaka O (2004) Growth promotion of mycelia of the Matsutake mushroom Tricholoma matsutake by D-isoleucine. Biosci Biotechnol Biochem 11:2405–2407

    Article  Google Scholar 

  • Korb JE, Fulé PZ, Stoddard MT (2012) Forest restoration in a surface fire-dependent ecosystem: an example from a mixed conifer forest, southwestern Colorado, USA. Forest Ecol Manag 269:10–18

    Article  Google Scholar 

  • Kuo M, Dewsbury DR, O’Donnell K, Carter MC, Rehner SA, Moore JD, Moncalvo JM, Canfield SA, Stephenson SL, Methven AS, Volk TJ (2012) Taxonomic revision of true morels (Morchella) in Canada and the United States. Mycologia 104:1159–1177

    Article  PubMed  Google Scholar 

  • Li QL, Ding C, Fan L (2013a) Trophic manner of morels analyzed by using stable carbon isotopes. Mycosystema 32:213–223 (in Chinese)

    CAS  Google Scholar 

  • Li X, Chen Z, Peng C, Han Y, Xu J, Long Z (2013b) Effect of different ferric fertilizers on planting Morchella conica fruiting yields and analyses of the microflora and bioactivities of its grown soil. Afr J Microbiol Res 7:4707–4716

    Article  Google Scholar 

  • Liu H, Xu J, Li X, Zhang Y, Yin A, Wang J, Long Z (2015) Effects of microelemental fertilizers on yields, mineral element levels and nutritional compositions of the artificially cultivated Morchella conica. Sci Hortic Amsterdam 189:86–93

    Article  CAS  Google Scholar 

  • Liu QZ, Ma HS, Zhang Y, Dong CH (2017a) Artificial cultivation of true morels: current state, issues and perspectives. Crit Rev Biotechnol 1:1–13

    Article  Google Scholar 

  • Liu QY, Liu HM, Chen CQ, Wang JM, Han Y, Long ZF (2017b) Effects of element complexes containing Fe, Zn and Mn on artificial morel’s biological characteristics and soil bacterial community structures. PLoS One 12:e0174618

    Article  PubMed  PubMed Central  Google Scholar 

  • Loizides M, Bellanger JM, Clowez P, Richard F, Moreau PA (2016) Combined phylogenetic and morphological studies of true morels (Pezizales, Ascomycota) in Cyprus reveal significant diversity, including Morchella arbutiphila and M. disparilis spp. Mycol Prog 15:39

    Article  Google Scholar 

  • Martin AM (1982) Submerged growth of Morchella esculenta in peat hydrolysates. Biotechnol Lett 4:13–18

    Article  Google Scholar 

  • Masaphy S (2010) Biotechnology of morel mushrooms: successful fruiting body formation and development in a soilless system. Biotechnol Lett 32:1523–1527

    Article  CAS  PubMed  Google Scholar 

  • Masaphy S, Zabari L (2013) Observations on post-fire black morel ascocarp development in an Israeli burnt forest site and their preferred micro-sites. Fungal Ecol 6:316–318

    Article  Google Scholar 

  • Masaphy S, Zabari L, Gander-Shagug G (2008) Morchella conica Pers. proliferation in post-fire forests in northern Israel. Israel J Plant Sci 56:315–319

    Article  Google Scholar 

  • Mehlich A (1982) Comprehensive methods in soil testing. Mimeo-89, North Carolina Department of Agriculture, Raleigh, NC

  • O’Donnell K, Rooney AP, Mills GL, Kuo M, Weber NS, Rehner SA (2011) Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genet Biol 48:252–265

    Article  PubMed  Google Scholar 

  • Ower R (1982) Notes on the development of the morel ascocarp: Morchella esculenta. Mycologia 74:142–144

    Article  Google Scholar 

  • Ower RD, Mills GL, Malachowski JA (1986) Cultivation of Morchella. US patent no. 4594809

  • Pilz D, Weber NS, Carter MC, Parks CG, Molina R (2004) Productivity and diversity of morel mushrooms in healthy, burned, and insect-damaged forests of northeastern Oregon. Forest Ecol Manag 198:367–386

    Article  Google Scholar 

  • Taşkın H, Büyükalaca S, Doğan HH, Rehner SA, O’Donnell K (2010) A multigene molecular phylogenetic assessment of true morels (Morchella) in Turkey. Fungal Genet Biol 47:672–682

    Article  PubMed  Google Scholar 

  • Tessier JT, Raynal DJ (2003) Vernal nitrogen and phosphorus retention by forest understory vegetation and soil microbes. Plant Soil 256:443–453

    Article  CAS  Google Scholar 

  • Traeger S, Altegoer F, Freitag M, Gabaldon T, Kempken F, Kumar A, Marcet-Houben M, Pöggeler S, Stajich JE, Nowrousian M (2013) The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS genet 9:e1003820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk TJ, Leonard TJ (1990) Cytology of the life-cycle of Morchella. Mycol Res 94:399–406

    Article  Google Scholar 

  • Winder RS (2006) Cultural studies of Morchella elata. Mycol Res 110:612–623

    Article  PubMed  Google Scholar 

  • Winder RS, Keefer ME (2008) Ecology of the 2004 morel harvest in the Rocky Mountain Forest District of British Columbia. Botany 86:1152–1167

    Article  Google Scholar 

  • Wurtz TL, Wiita AL, Weber NS, Pilz D (2005) Harvesting morels after wildfire in Alaska. United StatesDepartment ofAgriculture (USDA), Research Note PNW-RN-546

  • Xiong C, Li Q, Chen C, Chen Z, Huang W (2016) Neuroprotective effect of crude polysaccharide isolated from the fruiting bodies of Morchella importuna against H2O2-induced PC12 cell cytotoxicity by reducing oxidative stress. Biomed Pharmacother 83:569–576

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to commemorating Prof. Linyong Zheng of the Sichuan Academy of Agricultural Sciences (SAAS) for his great contributions to the development of the edible mushroom industry in Sichuan Province, China. This work was supported by the projects of the Science and Technology Department of Sichuan Province, China (2016NYZ0040, 2016GZ0355) and the Sichuan Mushroom Innovation Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Li.

Additional information

Section Editor: Hans-Josef Schroers

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

ESM 1

Identification of the morels in this study (DOCX 85 kb)

ESM 2

Preparation of inoculum (DOCX 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xiong, C., Huang, W. et al. Controlled surface fire for improving yields of Morchella importuna . Mycol Progress 16, 1057–1063 (2017). https://doi.org/10.1007/s11557-017-1350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-017-1350-9

Keywords

Navigation