Skip to main content
Log in

A new species of Exophiala associated with roots

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

A new species of the genus Exophiala (Herpotrichiellaceae, Ascomycota), Exophiala radicis, is described. The description is based on five strains isolated as endophytes from roots of the brassicaceous plant Microthlaspi perfoliatum s.l., collected at different localities in Europe. As evidenced by phylogenetic analyses of regions of the ribosomal DNA [the small and large subunits, and the internal transcribed spacers (ITS)] and the translation elongation factor 1-α, the β-tubulin, and the actin genes, the new species is closely related to Exophiala tremulae and Exophiala equina. E. radicis differs from E. tremulae morphologically by the shape and size of their conidia. A comparison of ITS sequences of E. radicis with GenBank records suggests that the species has a wide distribution in the northern hemisphere, and that it is commonly associated with living plant roots, indicating potential adaptations to this substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13

    Article  Google Scholar 

  • Ali T, Schmuker A, Runge F, Solovyeva I, Nigrelli L, Paule J, Buch A-K, Xia X, Ploch S, Orren O, Kummer V, Linde-Laursen I, Ørgaard M, Hauser TP, Ҫelik A, Thines M (2016) Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae, Coluteocarpeae) and related genera. Taxon

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Attili-Angelis D, Duarte APM, Pagnocca FC, Nagamoto NS, de Vries M, Stielow JB, de Hoog GS (2014) Novel Phialophora species from leaf-cutting ants (tribe Attini). Fungal Divers 65:65–75

    Article  Google Scholar 

  • Ávila A, Groenewald JZ, Trapero A, Crous PW (2005) Characterisation and epitypification of Pseudocercospora cladosporioides, the causal organism of Cercospora leaf spot of olives. Mycol Res 109:881–888

    Article  PubMed  Google Scholar 

  • Bates ST, Reddy GSN, Garcia-Pichel F (2006) Exophiala crusticola anam. nov. (affinity Herpotrichiellaceae), a novel black yeast from biological soil crusts in the Western United States. Int J Syst Evol Microbiol 56:2697–2702

    Article  CAS  PubMed  Google Scholar 

  • Bukovská P, Jelínková M, Hršelová H, Sýkorová Z, Gryndler M (2010) Terminal restriction fragment length measurement errors are affected mainly by fragment length, G + C nucleotide content and secondary structure melting point. J Microbiol Methods 82:223–228

    Article  PubMed  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Carmichael JW (1967) Cerebral mycetoma of trout due to a Phialophora-like fungus. Med Mycol 5:120–123

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Cheikh-Ali Z, Glynou K, Ali T, Ploch S, Kaiser M, Thines M, Bode HB, Maciá-Vicente JG (2015) Diversity of exophillic acid derivatives in strains of an endophytic Exophiala sp. Phytochemistry 118:83–93

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Groenewald JZ, Shivas RG, Edwards J, Seifert KA, Alfenas AC, Alfenas RF, Burgess TI, Carnegie AJ, Hardy GESJ, Hiscock N, Hüberli D, Jung T, Louis-Seize G, Okada G, Pereira OL, Stukely MJC, Wang W, White GP, Young AJ, McTaggart AR, Pascoe IG, Porter IJ, Quaedvlieg W (2011) Fungal planet description sheets: 69–91. Persoonia Mol Phylogeny Evol Fungi 26:108–156

    Article  CAS  Google Scholar 

  • De Hoog GS, Hermanides-Nijhof EJ (1977) The black yeasts and allied hyphomycetes. Stud Mycol 15:1–222

    Google Scholar 

  • De Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ, Badali H, Seyedmousavi S (2011) Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia Mol Phylogeny Evol Fungi 27:46–72

    Article  Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Ferrari BC, Zhang C, van Dorst J (2011) Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-Antarctic soil through cultivation using both a high and a low nutrient media approach. Front Microbiol 2:217

    Article  PubMed Central  PubMed  Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Glynou K, Ali T, Buch AK, Haghi Kia S, Ploch S, Xia X, Çelik A, Thines M, Maciá-Vicente JG (2016) The local environment determines the assembly of root endophytic fungi at a continental scale. Environ Microbiol. doi:10.1111/1462-2920.13112

    Google Scholar 

  • Haase G, Sonntag L, Melzer-Krick B, de Hoog GS (1999) Phylogenetic inference by SSU gene analysis of members of the Herpotrichiellaceae, with special reference to human pathogenic species. Stud Mycol 43:80–97

    Google Scholar 

  • Hironaga M, Watanabe S, Nishimura K, Miyaji M (1981) Annellated conidiogenous cells in Exophiala dermatitidis, agent of phaeohyphomycosis. Mycologia 73:1181–1183

    Article  Google Scholar 

  • Hopple JS Jr, Vilgalys R (1994) Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86:96–107

    Article  CAS  Google Scholar 

  • Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379

    Article  PubMed  Google Scholar 

  • Iwatsu T, Udagawa S-I, Takase T (1991) A new species of Exophiala recovered from drinking water. Mycotaxon 41:321–328

    Google Scholar 

  • Julou T, Burghardt B, Gebauer G, Bervellier D, Damesin C, Selosse MA (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the gyalectales and ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ (2011a) Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plant 143:329–343

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Waqas M, Kang SM, Kim YH, Kim DH, Lee IJ (2011b) Exophiala sp. LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol Fertil Soils 48:519–529

    Article  Google Scholar 

  • Matos T, de Hoog GS, de Boer AG, de Crom I, Haase G (2002) High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses 45:373–377

    Article  CAS  PubMed  Google Scholar 

  • McGinnis MR, Ajello L (1974) A new species of Exophiala isolated from channel catfish. Mycologia 66:518–520

    Article  CAS  PubMed  Google Scholar 

  • Najafzadeh MJ, Dolatabadi S, Saradeghi Keisari M, Naseri A, Feng P, de Hoog GS (2013) Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers. J Microbiol Methods 94:338–342

    Article  CAS  PubMed  Google Scholar 

  • Neubert K, Mendgen K, Brinkmann H, Wirsel SGR (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72:1118–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ondeyka JG, Zink DL, Dombrowski AW, Polishook JD, Felock PJ, Hazuda DJ, Singhi SB (2003) Isolation, structure and HIV-1 integrase inhibitory activity of exophillic acid, a novel fungal metabolite from Exophiala pisciphila. J Antibiot (Tokyo) 56:1018–1023

    Article  CAS  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pedersen OA, Langvad F (1989) Exophiala psychrophila sp. nov., a pathogenic species of the black yeasts isolated from Atlantic salmon. Mycol Res 92:153–156

    Article  Google Scholar 

  • Pollacci G (1923) Miceti del corpo umano e degli animali. Atti Dell’Istituto Bot Univ Pavia 18:1–9

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richards RH, Holliman A, Helgason S (1978) Exophiala salmonis infection in Atlantic salmon Salmo salar L. J Fish Dis 1:357–368

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics btu033

  • Sterflinger K (2006) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Péter DG, Rosa PC (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 501–514

    Chapter  Google Scholar 

  • Surup F, Kuhnert E, Lehmann E, Heitkämper S, Hyde KD, Fournier J, Stadler M (2014) Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum. Mycology 5:110–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swofford D (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates

  • Uijthof JMJ, de Hoog GS (1995) PCR-ribotyping of type isolates of currently accepted Exophiala and Phaeococcomyces species. Antonie Van Leeuwenhoek 68:35–42

    Article  CAS  PubMed  Google Scholar 

  • Untereiner WA, Naveau FA (1999) Molecular systematics of the Herpotrichiellaceae with an assessment of the phylogenetic positions of Exophiala dermatitidis and Phialophora americana. Mycologia 91:67–83

    Article  CAS  Google Scholar 

  • Untereiner WA, Straus NA, Malloch D (1995) A molecular-morphotaxonomic approach to the systematics of the Herpotrichiellaceae and allied black yeasts. Mycol Res 99:897–913

    Article  CAS  Google Scholar 

  • Wen YM, Rajendran RK, Lin YF, Kirschner R, Hu S (2015) Onychomycosis associated with Exophiala oligosperma in Taiwan. Mycopathologia. doi:10.1007/s11046-015-9945-7

    PubMed  Google Scholar 

  • Woo PCY, Ngan AHY, Tsang CCC, Ling IWH, Chan JFW, Leung SY, Yuen KY, Lau SKP (2013) Clinical spectrum of Exophiala infections and a novel Exophiala species, Exophiala hongkongensis. J Clin Microbiol 51:260–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng JS, de Hoog GS (2008) Exophiala spinifera and its allies: diagnostics from morphology to DNA barcoding. Med Mycol 46:193–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by LOEWE (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) of the state of Hesse and was conducted within the framework of the Cluster for Integrative Fungal Research (IPF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose G. Maciá-Vicente.

Additional information

Section Editor: Roland Kirschner

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciá-Vicente, J.G., Glynou, K. & Piepenbring, M. A new species of Exophiala associated with roots. Mycol Progress 15, 18 (2016). https://doi.org/10.1007/s11557-016-1161-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-016-1161-4

Keywords

Navigation