Skip to main content
Log in

Aspergillus oryzae NRRL 35191 from coffee, a non-toxigenic endophyte with the ability to synthesize kojic acid

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Aspergillus oryzae NRRL 35191 was isolated as an endophyte from coffee leaves and found to produce kojic acid (KA) in culture. When inoculated into cacao seedlings (Theobroma cacao), A. oryzae grew endophytically and synthesized KA in planta. Cacao seedlings inoculated with A. oryzae produced higher levels of caffeine than non-inoculated ones. Aspergillus oryzae may be a useful endophyte to introduce to cacao since it grows non-pathogenically and induces the caffeine defense response that may make the plant more tolerant to insects and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alverson J (2003) Effects of mycotoxins, kojic acid and oxalic acid, on biological fitness of Lygus hesperus (Heteroptera: Miridae). J Invertebr Pathol 83:60–62

    Article  PubMed  CAS  Google Scholar 

  • Aneja M, Gianfagna TJ (2001) Induction and accumulation of caffeine in young, actively growing leaves of cocoa (Theobroma cacao L.) by wounding or infection with Crinipellis perniciosa. Physiol Mol Plant Pathol 59:13–16

    Article  CAS  Google Scholar 

  • Arnold E, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Bentley R (2006) From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat Prod Rep 23:1046–1062

    Article  PubMed  CAS  Google Scholar 

  • Burdock GA, Soni MG, Carabin IG (2001) Evaluation of health aspects of kojic acid in food. Regul Toxicol Pharmacol 33:80–101

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152

    Article  PubMed  CAS  Google Scholar 

  • Clarke BB, White JF Jr, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998

    Article  Google Scholar 

  • Cleveland TE, Dowd PF, Desjardins AE, Bhatnagar D, Cotty PJ (2003) United States Department of Agriculture–Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in U.S. crops. Pest Manag Sci 59:629–642

    Article  PubMed  CAS  Google Scholar 

  • Cole RJ, Schweikert MA (2003) Handbook of secondary fungal metabolites. Academic, San Diego

    Google Scholar 

  • Dowd PF (1999) Relative inhibition of insect phenoloxidase by cyclic fungal metabolites from insect and plant pathogens. Nat Toxins 7:337–341

    Article  PubMed  CAS  Google Scholar 

  • Dowd PF (2002) Antiinsectan compounds derived from microorganisms. In: Koul O, Dhaliwal GS (eds) Microbial biopesticides. Taylor & Francis, New York, pp 13–115

    Chapter  Google Scholar 

  • Geiser DM, Dorner JW, Horn BW, Taylor JW (2000) The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet Biol 31:169–179

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    Article  CAS  Google Scholar 

  • Kay E, Bertolla F, Vogel TM, Simonet P (2002) Opportunistic colonization of Ralstonia solanacearum-infected plants by Acinobacter sp. and its natural competence development. Microb Ecol 43:291–297

    Article  PubMed  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–946

    Article  PubMed  CAS  Google Scholar 

  • Klich MA (2007) Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol 8:713–722

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Smiley MJ, Robnett CJ, Wicklow DT (1986) DNA relatedness among wild and domesticated species of the Aspergillus flavus group. Mycologia 78:955–959

    Article  Google Scholar 

  • Leger RJSt, Screen SE, Shams-Pirzadeh B (2000) Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol 66:320–324

    Article  Google Scholar 

  • Peterson SW, Ito Y, Horn BW, Goto T (2001) Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius. Mycologia 93:689–703

    Article  CAS  Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches' broom disease. Int J Biol Sci 1:24–33

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Serra R, Peterson SW (2007) Penicillium astrolabium and Penicillium neocrassum, two new species isolated from grapes and their phylogenetic placement in the P. olsonii and P. brevicompactum clade. Mycologia 99:78–87

    Article  PubMed  CAS  Google Scholar 

  • United States Environmental Protection Agency (1997) Biotechnology Program Under Toxic Substances Control Act. Aspergillus oryzae Final Risk Assessment. http://www.epa.gov/oppt/biotech/pubs/fra/fra007.htm

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Vega FE, Posada F, Peterson SW, Gianfagna TJ, Chaves F (2006) Penicillium species endophytic in coffee plants and ochratoxin A production. Mycologia 98:37–48

    Article  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico, and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • White JF Jr, Morgan-Jones G (1996) Morphological and physiological adaptations of Balansiae and trends in the evolution of grass endophytes. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS, St. Paul, Minnesota, pp 133–154

    Google Scholar 

Download references

Acknowledgements

To CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for providing F.C. Chaves with a graduate fellowship. To Dr. Joan Bennett for her valuable review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio C. Chaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves, F.C., Gianfagna, T.J., Aneja, M. et al. Aspergillus oryzae NRRL 35191 from coffee, a non-toxigenic endophyte with the ability to synthesize kojic acid. Mycol Progress 11, 263–267 (2012). https://doi.org/10.1007/s11557-011-0745-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-011-0745-2

Keywords

Navigation