Skip to main content
Log in

An efficient edge detection algorithm for fast intra-coding for 3D video extension of HEVC

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The high efficiency video coding (HEVC)-based 3D video coding (3D-HEVC) has been recently standardized by the Joint Collaborative Team on 3D video coding as a 3D extension of HEVC. The 3D-HEVC has been developed to improve the coding efficiency of Multi-view Video plus Depth. Intra-prediction is considered as an important technique in image and video compression, which aims to exploit spatial correlation within one picture. The use of the variable coding unit size and multiple intra-prediction modes makes the intra-coding of 3D-HEVC very efficient. However, the computational complexity is increased significantly. This paper presents a low complexity mode decision algorithm for 3D-HEVC intra-prediction based on local edge information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Müller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Merkle, P., Rhee, F.H., Tech, G., Winken, M., Wiegand, T.: 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans. Image Process. 22(9), 3366–3378 (2013). doi:10.1109/TIP.2013.2264820

    Article  MathSciNet  MATH  Google Scholar 

  2. Sullivan, G.J., Boyce, J.M., Chen, Y., Ohm, J.R., Segall, C.A., Vetro, A.: Standardized extensions of high efficiency video coding (HEVC). IEEE J. Sel. Top. Signal Process. 7(6), 1001–1016 (2013)

    Article  Google Scholar 

  3. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  4. Chen, M., Yang, Y., Zhang, Q., Zhao, X., Huangb, X., Gan, Y.: Low complexity depth mode decision for HEVC-based 3D video coding. Optik-Int. J. Light Electron Opt. 127(11), 4758–4767 (2016)

    Article  Google Scholar 

  5. Fehn, C.: Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. In: SPIE Stereoscopic Displays and Virtual Reality Systems XI, pp. 93–104 (2004)

  6. Applications and Requirements on 3D Video Coding. ISO/IEC JTC1/SC29/WG11, Doc. N12035, Geneva, Switzerland (2011)

  7. Tech, G., Chen, Y., Müller, K., Ohm, J.R., Vetro, A., Wang, Y.K.: Overview of the multiview and 3D extensions of high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 26(1), 35–49 (2016). doi:10.1109/TCSVT.2015.2477935

    Article  Google Scholar 

  8. Merkle, P., Müller, K., Marpe, D., Wiegand, T.: Depth intra coding for 3D video based on geometric primitives. IEEE Trans. Circuits Syst. Video Technol. 26(3), 570–582 (2016)

    Article  Google Scholar 

  9. da Silva, T.L., Agostini, L.V., da Silva Cruz, L.A.: Fast mode selection algorithm based on texture analysis for 3D-HEVC intra prediction. J. Real Time Image Process. 12(2), 357–368 (2016)

    Article  Google Scholar 

  10. Park, C.: Edge-based intramode selection for depth-map coding in 3D-HEVC. IEEE Trans. Image Process. 24(1), 155–162 (2015)

    Article  MathSciNet  Google Scholar 

  11. Zhao, J., Zhao, X., Zhang, W., Wang, F., Zhang, Q.: An efficient depth modeling mode decision algorithm for 3D-HEVC depth map coding. Optik-Int. J. Light Electron Opt. 127(24), 12048–12055 (2016)

    Article  Google Scholar 

  12. Zhang, Q., Yang, Y., Chang, H., Zhang, W., Gan, Y.: Fast intra mode decision for depth coding in 3D-HEVC. Multidimens. Syst. Signal Process. (2016). doi:10.1007/s11045-016-0388-1

    Article  Google Scholar 

  13. Zhang, L., Tech, G., Wegner, K., Yea, S.: 3D-HEVC test model 5. In: 5th JCT-3V Meeting, Document JCT3V-E1005, Vienna (2013)

  14. Lin, Y.C., Lai, J.C.: Edge density early termination algorithm for HEVC coding tree block. In: Computer, Consumer and Control (IS3C), International Symposium on (IS3C), pp. 39–42 (2014)

  15. Wiegand, T., Han, W.J., Bross, B., Ohm, J.R., Sullivan, G.J.: High efficiency video coding (HEVC) text specification draft 7. JCTVC-I1003, JCT-VC Meeting-Geneva (2012)

  16. Bross, T., Han, W.J., Ohm, J.R., Sullivan, G.J., Wiegand, T.: High efficiency video coding (HEVC) text specification draft 4. JCTVC-F803, JCT-VC Meeting-Torino (2011)

  17. Piao, Y., Min, J., Chen, J.: Encoder improvement of unified intra prediction. JCT-VC Document JCTVC-C207 (2010)

  18. Müller, K., Merkle, P., Wiegand, T.: 3-D video representation using depth maps. Proc. IEEE 99(4), 643–656 (2011)

    Article  Google Scholar 

  19. Merkle, P., Morvan, Y., Smolic, A., Farin, D., Müller, K., de With, P.H.N., Wiegand, T.: The effects of multiview depth video compression on multiview rendering. Signal Process. Image Commun. 24(12), 73–88 (2009)

    Article  Google Scholar 

  20. Chen, Y., Tech, G., Wegner, K., Yea, S.: Test model 10 of 3D-HEVC and MV-HEVC. In: 10th JCT-3V Meeting, Document JCT3V-J1003, Strasbourg (2014)

  21. Fu, C.H., Zhang, H.B., Su, W.M., Tsang, S.H., Chan, Y.L.: Fast wedgelet pattern decision for DMM in 3D-HEVC. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 477–481 (2015)

  22. Pan, F., Lin, X., Rahardja, S., Lim, K.P., Li, Z.G., Wu, D., Wu, S.: Fast mode decision algorithm for intraprediction in H.264/AVC video coding. IEEE Trans. Circuits Syst. Video Technol. 15(7), 813–822 (2005)

    Article  Google Scholar 

  23. Baghaie, A., Yu, Z.: Structure Tensor based image interpolation method. AEü-Int. J. Electron. Commun. 69(2), 515–522 (2015)

    Article  Google Scholar 

  24. Faraklioti, M., Petrou, M.: The use of structure tensors in the analysis of seismic data. In: Mathematical Methods and Modelling in Hydrocarbon Exploration and Production, pp. 47–88 (2005)

    MATH  Google Scholar 

  25. Joint Collaborative Team on 3D video coding (JCT-3V) HTM 16.0 Reference Software: https://hevc.hhi.fraunhofer.de/trac/3D-HEVC/browser/3DVCSoftware/tags/HTM-16.0 (2015)

  26. Müller, K., Vetro, A.: Common test conditions of 3DV core experiments. In: 7th JCT-3V Meeting, Document JCT3V-G1100, San Jose, US (2014)

  27. Tanimoto, M., Fujii, T., Suzuki, K.: View synthesis algorithm in view synthesis reference software 2.0 (VSRS2.0). Tech. Rep., ISO/IEC JTC1/SC29/WG11 M16090, Lausanne, Switzerland (2008)

  28. Bjntegaard, G.: Calculation of average PSNR differences between RD curves. In: 13th VCEG Meeting, Document VCEGM33, Austin (2001)

  29. Bjntegaard, G.: Improvements of the BD-PSNR model. In: 35th VCEG Meeting, Document VCEG-AI11, Berlin (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Hamout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamout, H., Elyousfi, A. An efficient edge detection algorithm for fast intra-coding for 3D video extension of HEVC. J Real-Time Image Proc 16, 2093–2105 (2019). https://doi.org/10.1007/s11554-017-0718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0718-z

Keywords

Navigation