Skip to main content

Advertisement

Log in

Metastatic melanoma treated by immunotherapy: discovering prognostic markers from radiomics analysis of pretreatment CT with feature selection and classification

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Immunotherapy has dramatically improved the prognosis of patients with metastatic melanoma (MM). Yet, there is a lack of biomarkers to predict whether a patient will benefit from immunotherapy. Our aim was to create radiomics models on pretreatment computed tomography (CT) to predict overall survival (OS) and treatment response in patients with MM treated with anti-PD-1 immunotherapy.

Methods

We performed a monocentric retrospective analysis of 503 metastatic lesions in 71 patients with 46 radiomics features extracted following lesion segmentation. Predictive accuracies for OS < 1 year versus > 1 year and treatment response versus no response was compared for five feature selection methods (sequential forward selection, recursive, Boruta, relief, random forest) and four classifiers (support vector machine (SVM), random forest, K-nearest neighbor, logistic regression (LR)) used with or without SMOTE data augmentation. A fivefold cross-validation was performed at the patient level, with a tumour-based classification.

Results

The highest accuracy level for OS predictions was obtained with 3D lesions (0.91) without clinical data integration when combining Boruta feature selection and the LR classifier, The highest accuracy for treatment response prediction was obtained with 3D lesions (0.88) without clinical data integration when combining Boruta feature selection, the LR classifier and SMOTE data augmentation. The accuracy was significantly higher concerning OS prediction with 3D segmentation (0.91 vs 0.86) while clinical data integration led to improved accuracy notably in 2D lesions (0.76 vs 0.87) regarding treatment response prediction. Skewness was the only feature found to be an independent predictor of OS (HR (CI 95%) 1.34, p-value 0.001).

Conclusion

This is the first study to investigate CT texture parameter selection and classification methods for predicting MM prognosis with treatment by immunotherapy. Combining pretreatment CT radiomics features from a single tumor with data selection and classifiers may accurately predict OS and treatment response in MM treated with anti-PD-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAD:

Computer-aided diagnosis

CI:

Confidence interval

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

HR:

Hazard ratio

KNN:

K-nearest neighbor

LDH:

Serum lactate dehydrogenase

MM:

Metastatic melanoma

OS:

Overall survival

PD-1:

Program cell death 1

PFS:

Progression-free survival

RECIST:

Response Evaluation Criteria In Solid Tumours

RF:

Random forest

ROI:

Region of interest

SFS:

Sequential forward selection

SMOTE:

Synthetic Minority Oversampling TEchnique

SVM:

Support vector machine

References

  1. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, Stang A, Roesch A, Ugurel S (2018) Melanoma. The Lancet 392:971–984. https://doi.org/10.1016/S0140-6736(18)31559-9

    Article  Google Scholar 

  2. Song X, Zhao Z, Barber B, Farr AM, Ivanov B, Novich M (2015) Overall survival in patients with metastatic melanoma. Curr Med Res Opin 31:987–991. https://doi.org/10.1185/03007995.2015.1021904

    Article  PubMed  Google Scholar 

  3. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Sovak MA, Chang I, Choong N, Hack SP, McArthur GA, Ribas A (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371:1867–1876. https://doi.org/10.1056/NEJMoa1408868

    Article  CAS  PubMed  Google Scholar 

  4. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A (2015) KEYNOTE-006 investigators, Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 372:2521–2532. https://doi.org/10.1056/NEJMoa1503093

    Article  CAS  PubMed  Google Scholar 

  5. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. https://doi.org/10.1056/NEJMoa1412082

    Article  CAS  PubMed  Google Scholar 

  6. Martin-Liberal J, Kordbacheh T, Larkin J (2015) Safety of pembrolizumab for the treatment of melanoma. Expert Opin Drug Saf 14:957–964. https://doi.org/10.1517/14740338.2015.1021774

    Article  CAS  PubMed  Google Scholar 

  7. Hiniker SM, Maecker HT, Knox SJ (2015) Predictors of clinical response to immunotherapy with or without radiotherapy. J Radiat Oncol 4:339–345. https://doi.org/10.1007/s13566-015-0219-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, Simeone E, Mangana J, Schilling B, Di Giacomo AM, Brenner N, Kähler K, Heinzerling L, Gutzmer R, Bender A, Gebhardt C, Romano E, Meier F, Martus P, Maio M, Blank C, Schadendorf D, Dummer R, Ascierto PA, Hospers G, Garbe C, Wolchok JD (2016) Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res 22:5487–5496. https://doi.org/10.1158/1078-0432.CCR-16-0127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nosrati A, Tsai KK, Goldinger SM, Tumeh P, Grimes B, Loo K, Algazi AP, Nguyen-Kim TDL, Levesque M, Dummer R, Hamid O, Daud A (2017) Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a prediction scale for response to PD-1 monotherapy. Br J Cancer 116:1141–1147. https://doi.org/10.1038/bjc.2017.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao S-X, Lambregts DM, Schnerr RS, Beckers RC, Maas M, Albarello F, Riedl RG, Dejong CH, Martens MH, Heijnen LA, Backes WH, Beets GL, Zeng M-S, Beets-Tan RG (2016) CT texture analysis in colorectal liver metastases: a better way than size and volume measurements to assess response to chemotherapy? United Eur Gastroenterol J 4:257–263. https://doi.org/10.1177/2050640615601603

    Article  CAS  Google Scholar 

  11. Ganeshan B, Miles KA, Babikir S, Shortman R, Afaq A, Ardeshna KM, Groves AM, Kayani I (2017) CT-based texture analysis potentially provides prognostic information complementary to interim fdg-pet for patients with hodgkin’s and aggressive non-hodgkin’s lymphomas. Eur Radiol 27:1012–1020. https://doi.org/10.1007/s00330-016-4470-8

    Article  CAS  PubMed  Google Scholar 

  12. Verma V, Simone CB, Krishnan S, Lin SH, Yang J, Hahn SM (2017) The rise of radiomics and implications for oncologic management. JNCI J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx055

    Article  PubMed  Google Scholar 

  13. Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266:177–184. https://doi.org/10.1148/radiol.12120254

    Article  PubMed  Google Scholar 

  14. Miles KA, Ganeshan B, Griffiths MR, Young RCD, Chatwin CR (2009) Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology 250:444–452. https://doi.org/10.1148/radiol.2502071879

    Article  PubMed  Google Scholar 

  15. Mulé S, Thiefin G, Costentin C, Durot C, Rahmouni A, Luciani A, Hoeffel C (2018) Advanced hepatocellular carcinoma: pretreatment contrast-enhanced CT texture parameters as predictive biomarkers of survival in patients treated with sorafenib. Radiology 288:445–455. https://doi.org/10.1148/radiol.2018171320

    Article  PubMed  Google Scholar 

  16. Miles KA (2016) How to use CT texture analysis for prognostication of non-small cell lung cancer, Cancer Imaging Off. Publ Int Cancer Imaging Soc 16:10. https://doi.org/10.1186/s40644-016-0065-5

    Article  Google Scholar 

  17. Ahn SY, Park CM, Park SJ, Kim HJ, Song C, Lee SM, McAdams HP, Goo JM (2015) Prognostic value of computed tomography texture features in non-small cell lung cancers treated with definitive concomitant chemoradiotherapy. Invest Radiol 50:719–725. https://doi.org/10.1097/RLI.0000000000000174

    Article  CAS  PubMed  Google Scholar 

  18. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K (2012) Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 22:796–802. https://doi.org/10.1007/s00330-011-2319-8

    Article  PubMed  Google Scholar 

  19. Hayano K, Tian F, Kambadakone AR, Yoon SS, Duda DG, Ganeshan B, Sahani DV (2015) Texture analysis of non-contrast-enhanced computed tomography for assessing angiogenesis and survival of soft tissue sarcoma. J Comput Assist Tomogr 39:607–612. https://doi.org/10.1097/RCT.0000000000000239

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol 67:157–164. https://doi.org/10.1016/j.crad.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  21. Yip C, Landau D, Kozarski R, Ganeshan B, Thomas R, Michaelidou A, Goh V (2014) Primary esophageal cancer: heterogeneity as potential prognostic biomarker in patients treated with definitive chemotherapy and radiation therapy. Radiology 270:141–148. https://doi.org/10.1148/radiol.13122869

    Article  PubMed  Google Scholar 

  22. Zhang H, Graham CM, Elci O, Griswold ME, Zhang X, Khan MA, Pitman K, Caudell JJ, Hamilton RD, Ganeshan B, Smith AD (2013) Locally advanced squamous cell carcinoma of the head and neck: CT texture and histogram analysis allow independent prediction of overall survival in patients treated with induction chemotherapy. Radiology 269:801–809. https://doi.org/10.1148/radiol.13130110

    Article  PubMed  Google Scholar 

  23. Ramella S, Fiore M, Greco C, Cordelli E, Sicilia R, Merone M, Molfese E, Miele M, Cornacchione P, Ippolito E, Iannello G, D’Angelillo RM, Soda P (2018) A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients. PLoS ONE 13:e0207455. https://doi.org/10.1371/journal.pone.0207455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahn SJ, Kim JH, Park SJ, Han JK (2016) Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 85:1867–1874. https://doi.org/10.1016/j.ejrad.2016.08.014

    Article  PubMed  Google Scholar 

  25. Tian F, Hayano K, Kambadakone AR, Sahani DV (2015) Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion, Abdom. Imaging 40:1705–1712. https://doi.org/10.1007/s00261-014-0318-3

    Article  Google Scholar 

  26. Ravanelli M, Farina D, Morassi M, Roca E, Cavalleri G, Tassi G, Maroldi R (2013) Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol 23:3450–3455. https://doi.org/10.1007/s00330-013-2965-0

    Article  PubMed  Google Scholar 

  27. Knogler T, Thomas K, El-Rabadi K, Karem E-R, Weber M, Michael W, Karanikas G, Georgios K, Mayerhoefer ME, Marius Erik M (2014) Three-dimensional texture analysis of contrast enhanced CT images for treatment response assessment in Hodgkin lymphoma: comparison with F-18-FDG PET. Med Phys 41:121904. https://doi.org/10.1118/1.4900821

    Article  CAS  PubMed  Google Scholar 

  28. Kniep HC, Madesta F, Schneider T, Hanning U, Schönfeld MH, Schön G, Fiehler J, Gauer T, Werner R, Gellissen S (2019) Radiomics of Brain MRI: utility in prediction of metastatic tumor type. Radiology 290:479–487. https://doi.org/10.1148/radiol.2018180946

    Article  PubMed  Google Scholar 

  29. Ortiz-Ramón R, Larroza A, Ruiz-España S, Arana E, Moratal D (2018) Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur Radiol 28:4514–4523. https://doi.org/10.1007/s00330-018-5463-6

    Article  PubMed  Google Scholar 

  30. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA (2013) Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266:326–336. https://doi.org/10.1148/radiol.12112428

    Article  PubMed  Google Scholar 

  31. Smith AD, Gray MR, del Campo SM, Shlapak D, Ganeshan B, Zhang X, Carson WE (2015) Predicting overall survival in patients with metastatic melanoma on antiangiogenic therapy and recist stable disease on initial posttherapy images using CT texture analysis. Am J Roentgenol 205:W283–W293. https://doi.org/10.2214/AJR.15.14315

    Article  Google Scholar 

  32. Durot C, Mulé S, Soyer P, Marchal A, Grange F, Hoeffel C (2019) Metastatic melanoma: pretreatment contrast-enhanced CT texture parameters as predictive biomarkers of survival in patients treated with pembrolizumab. Eur Radiol 29:3183–3191. https://doi.org/10.1007/s00330-018-5933-x

    Article  PubMed  Google Scholar 

  33. Schraag A, Klumpp B, Afat S, Gatidis S, Nikolaou K, Eigentler TK, Othman AE (2019) Baseline clinical and imaging predictors of treatment response and overall survival of patients with metastatic melanoma undergoing immunotherapy. Eur J Radiol 121:108688. https://doi.org/10.1016/j.ejrad.2019.108688

    Article  PubMed  Google Scholar 

  34. Wang Z, Mao L, Zhou Z, Si L, Zhu H, Chen X, Zhou M, Sun Y, Guo J (2020) Pilot study of CT-based radiomics model for early evaluation of response to immunotherapy in patients with metastatic melanoma. Front Oncol 10:1524. https://doi.org/10.3389/fonc.2020.01524

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  36. Chu H, Liu Z, Liang W, Zhou Q, Zhang Y, Lei K, Tang M, Cao Y, Chen S, Peng S, Kuang M (2021) Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma. Eur Radiol 31:2368–2376. https://doi.org/10.1007/s00330-020-07250-5

    Article  PubMed  Google Scholar 

  37. Badic B, Da-ano R, Poirot K, Jaouen V, Magnin B, Gagnière J, Pezet D, Hatt M, Visvikis D (2021) Prediction of recurrence after surgery in colorectal cancer patients using radiomics from diagnostic contrast-enhanced computed tomography: a two-center study. Eur Radiol. https://doi.org/10.1007/s00330-021-08104-4

    Article  PubMed  Google Scholar 

  38. Yin P, Mao N, Zhao C, Wu J, Sun C, Chen L, Hong N (2019) Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Eur Radiol 29:1841–1847. https://doi.org/10.1007/s00330-018-5730-6

    Article  PubMed  Google Scholar 

  39. Sun W, Jiang M, Dang J, Chang P, Yin F-F (2018) Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis. Radiat Oncol 13:197. https://doi.org/10.1186/s13014-018-1140-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, Pellot-Barakat C, Soussan M, Frouin F, Buvat I (2018) LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78:4786–4789. https://doi.org/10.1158/0008-5472.CAN-18-0125

    Article  CAS  PubMed  Google Scholar 

  41. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357. https://doi.org/10.1613/jair.953

    Article  Google Scholar 

  42. Altman DG (1990) Practical statistics for medical research. CRC Press, Florida

    Book  Google Scholar 

  43. Terwee CB, Bot SDM, de Boer MR, van der Windt DAWM, Knol DL, Dekker J, Bouter LM, de Vet HCW (2007) Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 60:34–42. https://doi.org/10.1016/j.jclinepi.2006.03.012

    Article  PubMed  Google Scholar 

  44. Hodi FS, Hwu W-J, Kefford R, Weber JS, Daud A, Hamid O, Patnaik A, Ribas A, Robert C, Gangadhar TC, Joshua AM, Hersey P, Dronca R, Joseph R, Hille D, Xue D, Li XN, Kang SP, Ebbinghaus S, Perrone A, Wolchok JD (2016) Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol 34:1510–1517. https://doi.org/10.1200/JCO.2015.64.0391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087. https://doi.org/10.1038/srep13087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H, Li Q, Cherezov D, Gatenby RA, Balagurunathan Y, Goldgof D, Schabath MB, Hall L, Gillies RJ (2016) Predicting malignant nodules from screening CTs. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 11:2120–2128. https://doi.org/10.1016/j.jtho.2016.07.002

    Article  Google Scholar 

  47. Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJWL (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol 5:272. https://doi.org/10.3389/fonc.2015.00272

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fernandez-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15(1):3133–3181

    Google Scholar 

  49. Musa AB (2013) Comparative study on classification performance between support vector machine and logistic regression. Int J Mach Learn Cybern 4:13–24. https://doi.org/10.1007/s13042-012-0068-x

    Article  Google Scholar 

  50. Kirasich K, Smith T, Sadler B (2018) Random forest vs logistic regression: binary classification for heterogeneous datasets. SMU Data Science Review 1:25

    Google Scholar 

  51. Uddin S, Khan A, Hossain ME, Moni MA (2019) Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 19:281. https://doi.org/10.1186/s12911-019-1004-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Helen Braund for language editing.

Funding

The authors confirm that no funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Magnin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungan, G., Lavandier, AF., Rouanet, J. et al. Metastatic melanoma treated by immunotherapy: discovering prognostic markers from radiomics analysis of pretreatment CT with feature selection and classification. Int J CARS 17, 1867–1877 (2022). https://doi.org/10.1007/s11548-022-02662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02662-8

Keywords

Navigation