Skip to main content

Advertisement

Log in

Grinding trajectory generator in robot-assisted laminectomy surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Grinding trajectory planning for robot-assisted laminectomy is a complicated and cumbersome task. The purpose of this research is to automatically obtain the surgical target area from the CT image, and based on this, formulate a reasonable robotic grinding trajectory.

Methods

We propose a deep neural network for laminae positioning, a trajectory generation strategy, and a grinding speed adjusting strategy. These algorithms can obtain surgical information from CT images and automatically complete grinding trajectory planning.

Results

The proposed laminae positioning network can reach a recognition accuracy of 95.7%, and the positioning error is only 1.12 mm in the desired direction. The simulated surgical planning on the public dataset has achieved the expected results. In a set of comparative robotic grinding experiments, those using the speed adjustment algorithm obtained a smoother grinding force.

Conclusion

Our work can automatically extract laminar centers from the CT image precisely to formulate a reasonable surgical trajectory plan. It simplifies the surgical planning process and reduces the time needed for surgeons to perform such a cumbersome operation manually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Whaley C (2013) Decompressive lumbar laminectomy: indications and discussion. Tech Reg Anesth Pain Manag 17(2):39–42

    Article  Google Scholar 

  2. Hulen CA (2008) A review of the significance, indications, techniques, and outcomes of revision lumbar laminectomy surgery. Semin Spine Surg 20(4):270–276

    Article  Google Scholar 

  3. Agabegi SS, McClung HL (2013) Open lumbar laminectomy: Indications, surgical techniques, and outcomes. Semi Spine Surg 25(4):246–250

    Article  Google Scholar 

  4. Khalsa SSS, Saadeh YS, Yee TJ, Strong MJ, Smith BW, Oppenlander ME (2020) Lumbar lateral recess decompression: 2-dimensional operative video. Oper Neurosurg (Hagerstown, Md). https://doi.org/10.1093/ons/opaa134

    Article  Google Scholar 

  5. Sun Y, Jiang Z, Qi X, Hu Y, Li B, Zhang J (2018) Robot-assisted decompressive laminectomy planning based on 3D medical image. IEEE Access 6:22557–22569

    Article  Google Scholar 

  6. Jiang Z, Qi X, Sun Y, Hu Y, Zahnd G, Zhang J (2020) Cutting depth monitoring based on milling force for robot-assisted laminectomy. IEEE Trans Autom Sci Eng 17(1):2–14

    Article  Google Scholar 

  7. Qi X, Sun Y, Ma X, Hu Y, Zhang J, Tian W (2018) Multilevel fuzzy control based on force information in robot-assisted decompressive laminectomy. Adv Exp Med Biol 1093:263

    Article  Google Scholar 

  8. Ying Z, Shu L, Sugita N (2020) Autonomous penetration perception for bone cutting during laminectomy. IEEE, New York

    Google Scholar 

  9. Dai Y, Xue Y, Zhang J (2016) Milling state identification based on vibration sense of a robotic surgical system. IEEE Trans Industr Electron 63(10):6184–6193

    Article  Google Scholar 

  10. Dai Y, Xue Y, Zhang J (2016) A continuous wavelet transform approach for harmonic parameters estimation in the presence of impulsive noise. J Sound Vib 360:300–314

    Article  Google Scholar 

  11. Dai Y, Xue Y, Zhang J (2018) Bioinspired integration of auditory and haptic perception in bone milling surgery. IEEE/ASME Trans Mechatron 23(2):614–623

    Article  Google Scholar 

  12. Zheng G, Nolte L (2018) Computer-aided orthopaedic surgery: state-of-the-art and future perspectives. Adv Exp Med Biol 1093:1

    Article  Google Scholar 

  13. Zhang Q, Li M, Qi X, Hu Y, Sun Y, Yu G (2018) 3D path planning for anterior spinal surgery based on CT images and reinforcement learning. In: 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, 2018, pp 317–321

  14. Sugita N, Nakano T, Kato T, Nakajima Y, Mitsuishi M (2010) Tool path generator for bone machining in minimally invasive orthopedic surgery. IEEE/ASME Trans Mechatron 15(3):471–479

    Article  Google Scholar 

  15. Sugita N, Nakano T, Abe N, Fujiwara K, Ozaki T, Suzuki M, Mitsuishi M (2011) Toolpath strategy based on geometric model for multi-axis medical machine tool. CIRP Ann 60(1):419–424

    Article  Google Scholar 

  16. Li Q, Du Z, Yu H (2020) Trajectory planning for robot-assisted laminectomy decompression based on CT images. IOP Conf Ser Mater Sci Eng 768:042037

    Article  Google Scholar 

  17. Yang D, Xiong T, Xu D, Huang Q, Liu D, Zhou SK, Xu Z, Park J, Chen M, Tran TD, Chin SP, Metaxas D, Comaniciu D (2017) Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In: Information processing in medical imaging. IPMI 2017. Lecture notes in computer science, vol 10265

  18. Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2016) The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: IEEE conference on computer vision and pattern recognition workshops (CVPRW), 2017, pp 1175–1183

  19. Bui TD, Shin J, Moon T (2017) 3D densely convolutional networks for volumetric segmentation. arXiv:1709.03199v5

  20. Lessmann N, van Ginneken B, de Jong PA, Išgum I (2019) Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med Image Anal 53:142–155

    Article  Google Scholar 

  21. Li Y, Liang W, Zhang Y, Tan J (2018) Automatic global level set approach for lumbar vertebrae CT image segmentation. Biomed Res Int 2018:1–12

    Google Scholar 

  22. Yao J, Burns JE, Forsberg D, Seitel A, Rasoulian A, Abolmaesumi P, Hammernik K, Urschler M, Ibragimov B, Korez R, Vrtovec T, Castro-Mateos I, Pozo JM, Frangi AF, Summers RM, Li S (2016) A multi-center milestone study of clinical vertebral CT segmentation. Comput Med Imag Graph 49:16–28

    Article  Google Scholar 

  23. Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally invasive image-guided cochlear implantation surgery: First report of clinical implementation. Laryngoscope 124(8):1915–1922

    Article  Google Scholar 

  24. Stern D, Likar B, Pernus F, Vrtovec T (2011) Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys Med Biol 56(23):7505–7522

    Article  Google Scholar 

  25. Ibragimov B, Likar B, Pernus F, Vrtovec T (2014) Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans Med Imag 33(4):861–874

    Article  Google Scholar 

  26. Ibragimov B, Korez R, Likar B, Pernus F, Xing L, Vrtovec T (2017) Segmentation of pathological structures by landmark-assisted deformable models. IEEE Trans Med Imag 36(7):1457–1469

    Article  Google Scholar 

Download references

Funding

This work was supported by the Chinese National High Technology Research and Development Program (863) under Grant 2015AA043201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Du, Z. & Yu, H. Grinding trajectory generator in robot-assisted laminectomy surgery. Int J CARS 16, 485–494 (2021). https://doi.org/10.1007/s11548-021-02316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-021-02316-1

Keywords

Navigation