Skip to main content

Advertisement

Log in

Automatic detection of perforator vessels using infrared thermography in reconstructive surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Knowing the location of the blood vessels supplying the skin and subcutaneous tissue is a requirement during the planning of tissue transfer in reconstructive surgery. Commonly used imaging techniques such as computed tomography angiography and indocyanine green angiography expose the patient to radiation or a contrast agent, respectively. Infrared thermal imaging was evaluated with success as a non-invasive alternative. To support the interpretation of thermograms, a method to automatically detect the perforators was developed and evaluated.

Methods

A system consisting of a thermal camera, a PC and custom software was developed. The temperature variations of the skin surface were analysed to extract the perforator locations. A study was conducted to assess the performance of the algorithm by comparing the detection results of the algorithm with manually labelled thermal images by two clinicians of the deep inferior epigastric perforator flap of 20 healthy volunteers.

Results

The F measure, precision and recall were used to evaluate the system performance. The median F measure is 0.833, the median precision is 0.80, and the median recall is 0.907.

Conclusion

The results of this study showed that it is possible to automatically and reliably detect the skin perforators in thermograms despite their weak temperature signature. Infrared thermal imaging is a non-invasive and contactless approach suitable for intraoperative use. Combined with a computer-assisted tool for the automatic detection of perforator vessels, it is a relevant alternative intraoperative imaging method to the standard indocyanine green angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gardiner MD, Nanchahal J (2010) Strategies to ensure success of microvascular free tissue transfer. J Plast Reconstr Aesthet Surg 63(9):e665–e673

    Article  PubMed  CAS  Google Scholar 

  2. Wade RG, Watford J, Wormald JCR, Bramhall RJ, Figus A (2018) Perforator mapping reduces the operative time of DIEP flap breast reconstruction: a systematic review and meta-analysis of preoperative ultrasound, computed tomography and magnetic resonance angiography. J Plast Reconstr Aesthet Surg 71(4):468–477

    Article  PubMed  Google Scholar 

  3. Cina A, Barone-Adesi L, Rinaldi P, Cipriani A, Salgarello M, Masetti R, Bonomo L (2013) Planning deep inferior epigastric perforator flaps for breast reconstruction: a comparison between multidetector computed tomography and magnetic resonance angiography. Eur Radiol 23(8):2333–2343

    Article  PubMed  CAS  Google Scholar 

  4. Lange CJ, Thimmappa ND, Boddu SR, Dutruel SP, Pei M, Farooq Z, Heshmatzadeh Behzadi A, Wang Y, Zabih R, Prince MR (2017) Automating perforator flap MRA and CTA reporting. J Digit Imaging 30(3):350–357

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chae MP, Hunter-Smith DJ, Rozen WM (2016) Comparative study of software techniques for 3d mapping of perforators in deep inferior epigastric artery perforator flap planning. Gland Surg 5(2):99–106

    PubMed  PubMed Central  Google Scholar 

  6. Wong C-H, Wei F-C (2010) Microsurgical free flap in head and neck reconstruction. Head Neck 32(9):1236–1245

    Article  PubMed  Google Scholar 

  7. Rozen WM, Phillips TJ, Ashton MW, Stella DL, Gibson RN, Taylor GI (2008) Preoperative imaging for DIEA perforator flaps: a comparative study of computed tomographic angiography and doppler ultrasound. Plast Reconstr Surg 121(1):9

    PubMed  CAS  Google Scholar 

  8. Giunta R, Geisweid A, Feller AM (2000) The value of preoperative doppler sonography for planning free perforator flaps. Plast Reconstr Surg 105(7):2381–2386

    Article  PubMed  CAS  Google Scholar 

  9. Marshall MV, Rasmussen JC, Tan I-C, Aldrich MB, Adams KE, Wang X, Fife CE, Maus EA, Smith LA, Sevick-Muraca EM (2010) Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J 2(2):12–25

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55(4):221–235

    Article  Google Scholar 

  11. Chang K, Yoon S, Sheth N, Seidel M, Antalek M, Ahad J, Darlington T, Ikeda A, Kato GJ, Ackerman H, Gorbach AM (2015) Rapid vs. delayed infrared responses after ischemia reveal recruitment of different vascular beds. Quant Infrared Thermogr J 12(2):173–183

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pirtini Çetingül M, Herman C (2011) Quantification of the thermal signature of a melanoma lesion. Int J Therm Sci 50(4):421–431

    Article  Google Scholar 

  13. Vreugdenburg TD, Willis CD, Mundy L, Hiller JE (2013) A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis. Breast Cancer Res Treat 137(3):665–676

    Article  PubMed  Google Scholar 

  14. Gerasimova E, Audit B, Roux SG, Khalil A, Gileva O, Argoul F, Naimark O, Arneodo A (2014) Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis. Front Physiol 5:176

    Article  PubMed  PubMed Central  Google Scholar 

  15. Omranipour R, Kazemian A, Alipour S, Najafi M, Alidoosti M, Navid M, Alikhassi A, Ahmadinejad N, Bagheri K, Izadi S (2016) Comparison of the accuracy of thermography and mammography in the detection of breast cancer. Breast Care 11(4):260–264

    Article  PubMed  PubMed Central  Google Scholar 

  16. Denoble AE, Hall N, Pieper CF, Kraus VB (2010) Patellar skin surface temperature by thermography reflects knee osteoarthritis severity. Clin Med Insights Arthritis Musculoskelet Disord 3:69–75

    Article  PubMed  PubMed Central  Google Scholar 

  17. Polidori G, Renard Y, Lorimier S, Pron H, Derruau S, Taiar R (2017) Medical infrared thermography assistance in the surgical treatment of axillary hidradenitis suppurativa: a case report. Int J Surg Case Rep 34:56–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bagavathiappan S, Saravanan T, Philip J, Jayakumar T, Raj B, Karunanithi R, Panicker TMR, Paul Korath M, Jagadeesan K (2009) Infrared thermal imaging for detection of peripheral vascular disorders. J Med Phys 34(1):43–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lin PH, Echeverria A, Poi MJ (2017) Infrared thermography in the diagnosis and management of vasculitis. J Vasc Surg Cases Innov Tech 3(3):112–114

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Weerd L, Weum S, Mercer JB (2012) Dynamic infrared thermography (DIRT) in the preoperative, intraoperative and postoperative phase of DIEP flap surgery. J Plast Reconstr Aesthet Surg 65(5):694–695

    Article  PubMed  Google Scholar 

  21. Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18(5):686

    Article  PubMed  CAS  Google Scholar 

  22. Zimmermann T, Zimmermann M (2012) Lehrbuch der Infrarotthermografie: allgemeine Grundlagen der Thermodynamik, Grundlagen der Strahlungsphysik, Infrarot-Geräte-Technologie (für normative Stufe 1 und 2). Fraunhofer IRB-Verl, Stuttgart. OCLC:816255129

  23. Schmidt E, Eckert E (1935) Über die Richtungsverteilung der Wärmestrahlung von Oberflächen. Forschung auf dem Gebiet des Ingenieurwesens A 6(4):175–183

    Article  Google Scholar 

  24. Gerasimova-Chechkina E, Toner B, Marin Z, Audit B, Roux SG, Argoul F, Khalil A, Gileva O, Naimark O, Arneodo A (2016) Comparative multifractal analysis of dynamic infrared thermograms and X-ray mammograms enlightens changes in the environment of malignant tumors. Front Physiol 7:336

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gerasimova-Chechkina E, Toner B, Marin Z, Audit B, Roux SG, Argoul F, Khalil A, Gileva O, Naimark O, Arneodo A (2016) Combining multifractal analyses of digital mammograms and infrared thermograms to assist in early breast cancer diagnosis. In: AIP conference proceedings, vol 1760. AIP Publishing, Melville, p 020018

Download references

Acknowledgements

The project was funded by the German Federal Ministry of Education and Research (BMWi) in the scope of Zentrales Innovationsprogramm Mittelstand (ZIM) (Grant Number KF 2026723AK4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Unger.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unger, M., Markfort, M., Halama, D. et al. Automatic detection of perforator vessels using infrared thermography in reconstructive surgery. Int J CARS 14, 501–507 (2019). https://doi.org/10.1007/s11548-018-1892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-018-1892-6

Keywords

Navigation