Skip to main content

Advertisement

Log in

Fully automatic segmentation of paraspinal muscles from 3D torso CT images via multi-scale iterative random forest classifications

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To develop and validate a fully automatic method for segmentation of paraspinal muscles from 3D torso CT images.

Methods

We propose a novel learning-based method to address this challenging problem. Multi-scale iterative random forest classifications with multi-source information are employed in this study to speed up the segmentation and to improve the accuracy. Here, multi-source images include the original torso CT images and later also the iteratively estimated and refined probability maps of the paraspinal muscles. We validated our method on 20 torso CT data with associated manual segmentation. We randomly partitioned the 20 CT data into two evenly distributed groups and took one group as the training data and the other group as the test data.

Results

The proposed method achieved a mean Dice coefficient of 93.0%. It took on average 46.5 s to segment a 3D torso CT image with the size ranging from \(512 \times 512 \times 802\) voxels to \(512 \times 512 \times 1031\) voxels.

Conclusions

Our fully automatic, learning-based method can accurately segment paraspinal muscles from 3D torso CT images. It generates segmentation results that are better than those achieved by the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beriman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  2. Bresnahan L, Smith J, Ogden A, Quinn S, Cybulski G, Simonian N, Natarajan R, Fessler R, Fessler R (2017) Assessment of paraspinal muscle cross-sectional area after lumbar decompression: minimally invasive versus open approaches. Clin Spine Surg 30(3):E162–E168

    Article  PubMed  Google Scholar 

  3. Cooper R, Clair Forbes W, Jayson M (1992) Radiographic demonstration of paraspinal muscle wasting in patients with chronic low back pain. Rheumatology 31(6):389–394

    Article  CAS  Google Scholar 

  4. Dubuisson M, Jain A (1994) A modified hausdorff distance for object matching. In: Proceedings of international conference on pattern recognition (ICPR). pp 566–568

  5. Engstrom C, Fripp J, Jurcak V, Walker D, Salvado O, Crozier S (2011) Segmentation of the quadratus lumborum muscle using statistical shape modeling. J Magn Reson Imaging 33:1422–1429

    Article  PubMed  Google Scholar 

  6. Hides J, Stokes M, Saide M, Jull G, Cooper D (1994) Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine 19(2):165–172

    Article  CAS  PubMed  Google Scholar 

  7. Inoue T, Kitamura Y, Li Y, Ito W, Ishikawa H (2015) Psoas major muscle segmentation using higher-order shape prior. In: Proceedings of MICCAI-MCV workshop. pp 116–124

    Chapter  Google Scholar 

  8. Kalichman L, Carmeli E, Been E (2017) The association between imaging parameters of the paraspinal muscles, spinal degeneration, and low back pain. Biomed Res Int 2017:14

    Article  Google Scholar 

  9. Kamiya N, Zhou X, Chen H, Hara T, Hoshi H, Yokoyama R, Kanematsu M, Fujita H (2009) Automated recognition of the psoas major muscles on X-ray CT images. In: Proceedings of IEEE-EMBC 2009. pp 3557–3560

  10. Kamiya N, Zhou X, Chen H, Muramatsu C, Hara T, Yokoyama R, Kanematsu M, Hoshi H, Fujita H (2011) Automated segmentation of recuts abdominis muscle using shape model in X-ray CT images. In: Proceedings of IEEE-EMBC 2011. pp 7993–7996

  11. Karlsson A, Rosander J, Romu T, Tallberg J, Groenqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat mri. J Magn Reson Imaging 41(6):1558–1569

    Article  PubMed  Google Scholar 

  12. Kume M, Kamiya N, Zhou X, Kato H, Chen H, Muramatsu C, Hara T, Miyoshi T, Matsuo M, Fujita H (2017) Automated recognition of the erector spinae muscle based on deep CNN at the level of the twelfth thoracic vertebrae in torso CT images. In: Proceedings of the 36th JAMIT annual meeting

  13. Le Troter A, Foure A, Guye M, Confort-Gouny S, Mattei J, Gondin J, Salort-Campana E, Bendahan D (2016) Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Magn Reson Mater Phys Biol Med (MAGMA) 29(2):245–257

    Article  CAS  Google Scholar 

  14. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of 2015 IEEE conference on computer vision and pattern recognition (CVPR 2015). pp 3431–3440

  15. Makrogiannis S, Serai S, Fishbein K, Schreiber C, Ferrucci L, Spencer R (2012) Automated quantification of muscle and fat in the thigh from water-, fat-, and nonsuppressed mr images. J Magn Reson Imaging 35(5):1153–1161

    Article  Google Scholar 

  16. Nimura Y, Deguchi D, Kitasaka T, Mori K, Suenaga Y (2008) Pluto: a common platform for computer-aided diagnosis. Med Imaging Technol 26(3):187–191

    Google Scholar 

  17. Ogier A, Sdika M, Foure A, Le Troter A, Bendahan D (2017) Individual muscle segmentation in MR images: A 3D propagation through 2D non-linear registration approaches. In: Proceedings of IEEE-EMBC 2017. pp 317–320

  18. Orgiu S, Lafortuna C, Rastelli F, Cadioli M, Falini A, Rizzo G (2016) Automatic muscle and fat segmentation in the thigh from t1-weighted MRI. J Magn Reson Imaging 43(3):601–610

    Article  PubMed  Google Scholar 

  19. Ozdemir F, Karani N, Fuernstahl P, Goksel O (2017) Interactive segmentation in MRI for orthopedic surgery planning: bone tissue. Int J Comput Assist Radiol Surg 12(6):1031–1039

    Article  PubMed  Google Scholar 

  20. Popuri K, Cobzas D, Esfandiari N, Baracos V, Jaegersand M (2016) Body composition assessment in axial CT images using FEM-based automatic segmentation of skeletal muscle. IEEE Trans Med Imaging 35(2):512–520

    Article  PubMed  Google Scholar 

  21. Qian C, Wang L, Gao Y, Yousuf A, Yang X, Oto A, Shen D (2016) In vivo MRI based prostate cancer localization with random forests and auto-context model. Comput Med Imaging Graph 52:44–57

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sdika M, Tonson A, Le Fur Y, Cozzone P, Bendahan D (2016) Multi-atlas-based fully automatic segmentation of individual muscles in rat leg. Magn Reson Mater Phys Biol Med (MAGMA) 29(2):223–235

    Article  Google Scholar 

  23. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651

    Article  PubMed  Google Scholar 

  24. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  25. Tu Z, Bai X (2010) Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans Pattern Anal Mach Intell 32:1744–1757

    Article  PubMed  Google Scholar 

  26. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of 2001 CVPR conference. IEEE pp 511–518

  27. Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57:137–154

    Article  Google Scholar 

  28. Wang C, Teboul O, Michel F, Essafi S, Paragios N (2010) 3D knowledge-based segmentation using pose-invariant higher-order graphs. In: Proceedings of MICCAI 2010. vol Part 3. pp 189–196

    Chapter  Google Scholar 

  29. Wei Y, Xu B, Tao X, Qu J (2015) Paraspinal muscle segmentation in CT images using a single atlas. In: Proceedings of IEEE international conference on progress in informatics and computing (IPC). pp 211–215

  30. Yang Y, Chong M, Tay L, Yew S, Yeo A, Tan C (2016) Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images. Magn Reson Mater Phys Biol Med (MAGMA) 29(5):723–731

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Multidisciplinary Computational Anatomy, #26108005 and #17H05301), JAPAN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinggang Shen or Guoyan Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individuals included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamiya, N., Li, J., Kume, M. et al. Fully automatic segmentation of paraspinal muscles from 3D torso CT images via multi-scale iterative random forest classifications. Int J CARS 13, 1697–1706 (2018). https://doi.org/10.1007/s11548-018-1852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-018-1852-1

Keywords

Navigation