Skip to main content
Log in

Visualization, measurement and modelling of the cochlea using rotating midmodiolar slice planes

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Cross-sectional visualization of anatomical structures in DICOM viewers is usually presented in parallel slices. For visualizing the inner ear, this concept is unfavourable due to the spiral shape of the cochlea. Radial slicing through its central axis (known as midmodiolar view) is advantageous. Therefore, a custom DICOM viewer was developed, which allows the visualization of the cochlea in a midmodiolar slice plane that rotates around the central axis of the cochlea, always cutting the latter radially.

Methods

The program was written in C++ using the open-source libraries ITK, VTK, GDCM and Qt. The rotation axis is defined by placing two points in the modiolus within a conventional slice visualization of the dataset. A midmodiolar visualization is calculated based on this axis. Scrolling the mouse wheel rotates slice plane around the axis, displaying midmodiolar slices at variable angles. Measurement options are provided as well as interactive placement of marker points whose coordinates can be exported for post-processing in other programs.

Results

The program can be used in multiple applications including the determination of cochlear dimensions, especially its length, and post-operative positions of cochlear implant (CI) electrode carriers. Computer-aided design models of the cochlea can be generated from exported marker points.

Conclusion

The proposed DICOM viewer directly focuses on the needs of cochlear visualization, thus making it a valuable tool in CI related research. The ease of use facilitates future clinical use, e.g. for pre-operative selection of optimal CI electrode carrier length based on the patient’s cochlear length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zahnert T (2011) The differential diagnosis of hearing loss. Dtsch Arztebl Int 108:433–444. doi:10.3238/arztebl.2011.0433

    PubMed  PubMed Central  Google Scholar 

  2. von Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, Hartmann R, Stürzebecher E, Klinke R (1999) Electric-acoustic stimulation of the auditory system. ORL 61:334–340. doi:10.1159/000027695

    Article  Google Scholar 

  3. Gantz BJ, Turner CW (2003) Combining acoustic and electrical hearing. Laryngoscope 113:1726–1730. doi:10.1097/00005537-200310000-00012

    Article  PubMed  Google Scholar 

  4. James CJ, Fraysse B, Deguine O, Lenarz T, Mawman D, Ramos Á, Ramsden R, Sterkers O (2006) Combined electroacoustic stimulation in conventional candidates for cochlear implantation. Audiol Neurotol 11:57–62. doi:10.1159/000095615

    Article  Google Scholar 

  5. von Ilberg CA, Baumann U, Kiefer J, Tillein J, Adunka OF (2011) Electric-acoustic stimulation of the auditory system: a review of the first decade. Audiol Neurotol 16:1–30. doi:10.1159/000327765

    Article  Google Scholar 

  6. Incerti PV, Ching TYC, Cowan R (2013) A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices. Trends Amplif 17:3–26. doi:10.1177/1084713813480857

    Article  PubMed  PubMed Central  Google Scholar 

  7. Irving S, Gillespie L, Richardson R, Rowe D, Fallon JB, Wise AK (2014) Electroacoustic stimulation: now and into the future. Biomed Res Int 2014:1–17. doi:10.1155/2014/350504

    Article  Google Scholar 

  8. Lane JI, Witte RJ, Driscoll CLW, Camp JJ, Robb RA (2004) Imaging microscopy of the middle and inner ear. Part I: CT microscopy. Clin Anat 17:607–612. doi:10.1002/ca.20059

    Article  PubMed  Google Scholar 

  9. Braun K, Böhnke F, Stark T (2012) Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Otolaryngol 132:603–613. doi:10.3109/00016489.2011.653670

    Article  PubMed  Google Scholar 

  10. Bellos C, Rigas G, Spiridon IF, Bibas A, Iliopoulou D, Böhnke F, Koutsouris D, Fotiadis DI (2014) Reconstruction of cochlea based on micro-CT and histological images of the human inner ear. Biomed Res Int 2014:485783. doi:10.1155/2014/485783

    Article  PubMed  PubMed Central  Google Scholar 

  11. Henson MM, Henson OW, Gewalt SL, Wilson JL, Johnson GA (1994) Imaging the cochlea by magnetic resonance microscopy. Hear Res 75:75–80. doi:10.1016/0378-5955(94)90058-2

    Article  CAS  PubMed  Google Scholar 

  12. Thorne M, Salt AN, DeMott JE, Henson MM, Henson OW, Gewalt SL (1999) Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 109:1661–1668. doi:10.1097/00005537-199910000-00021

    Article  CAS  PubMed  Google Scholar 

  13. Lane JI, Witte RJ, Henson OW, Driscoll CLW, Camp J, Robb RA (2005) Imaging microscopy of the middle and inner ear—part II: MR microscopy. Clin Anat 18:409–415. doi:10.1002/ca.20152

    Article  PubMed  Google Scholar 

  14. Voie AH, Spelman FA (1995) Three-dimensional reconstruction of the cochlea from two-dimensional images of optical sections. Comput Med Imaging Graph 19:377–384. doi:10.1016/0895-6111(95)00034-8

    Article  CAS  PubMed  Google Scholar 

  15. Hofman R, Segenhout JM, Wit HP (2009) Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction. J Microsc 233:251–257. doi:10.1111/j.1365-2818.2009.03115.x

    Article  CAS  PubMed  Google Scholar 

  16. Buytaert JAN, Descamps E, Adriaens D, Dirckx JJJ (2012) The OPFOS microscopy family: high-resolution optical sectioning of biomedical specimens. Anat Res Int 2012:1–9. doi:10.1155/2012/206238

    Article  Google Scholar 

  17. Lorbeer R-A, Heidrich M, Lorbeer C, Ramírez Ojeda DF, Bicker G, Meyer H, Heisterkamp A (2011) Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph. Opt Express 19:5419–5430. doi:10.1364/OE.19.005419

    Article  CAS  PubMed  Google Scholar 

  18. Rau TS, Würfel W, Lenarz T, Majdani O (2013) Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear. Int J CARS 8:481–509. doi:10.1007/s11548-013-0825-7

    Article  Google Scholar 

  19. Valeri G, Mazza FA, Maggi S, Aramini D, La Riccia L, Mazzoni G, Giovagnoni A (2014) Open source software in a practical approach for post processing of radiologic images. Radiol Med. doi:10.1007/s11547-014-0437-5

    Google Scholar 

  20. Roland PS, Wright CG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma. Adv Otorhinolaryngol 64:11–30. doi:10.1159/000094642

    PubMed  Google Scholar 

  21. Adunka OF, Radeloff A, Gstoettner WK, Pillsbury HC, Buchman CA (2007) Scala tympani cochleostomy II: topography and histology. Laryngoscope 117:2195–2200. doi:10.1097/MLG.0b013e3181453a53

    Article  PubMed  Google Scholar 

  22. Rebscher SJ, Hetherington A, Bonham B, Wardrop P, Whinney D, Leake PA (2008) Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion. J Rehabil Res Dev 45:731–747. doi:10.1682/JRRD.2007.08.0119

    Article  PubMed  PubMed Central  Google Scholar 

  23. Todd CA, Naghdy F, Svehla MJ (2007) Force application during cochlear implant insertion: an analysis for improvement of surgeon technique. IEEE Trans Biomed Eng 54:1247–1255. doi:10.1109/TBME.2007.891937

    Article  PubMed  Google Scholar 

  24. Majdani O, Schurzig D, Hussong A, Rau T, Wittkopf J, Lenarz T, Labadie RF (2010) Force measurement of insertion of cochlear implant electrode arrays in vitro: comparison of surgeon to automated insertion tool. Acta Otolaryngol 130:31–36. doi:10.3109/00016480902998281

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rau TS, Hussong A, Leinung M, Lenarz T, Majdani O (2010) Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model. Int J CARS 5:173–181. doi:10.1007/s11548-009-0299-9

    Article  Google Scholar 

  26. Kontorinis G, Lenarz T, Stöver T, Paasche G (2011) Impact of the insertion speed of cochlear implant electrodes on the insertion forces. Otol Neurotol 32:565–570. doi:10.1097/MAO.0b013e318219f6ac

    Article  PubMed  Google Scholar 

  27. Rebscher SJ, Talbot N, Bruszewski W, Heilmann M, Brasell J, Merzenich MM (1996) A transparent model of the human scala tympani cavity. J Neurosci Methods 64:105–114. doi:10.1016/0165-0270(95)00116-6

    Article  CAS  PubMed  Google Scholar 

  28. Clark JR, Warren FM, Abbott JJ (2011) A scalable model for human scala-tympani phantoms. J Med Device 5:014501. doi:10.1115/1.4002932

    Article  Google Scholar 

  29. Lecerf P, Bakhos D, Cottier J-P, Lescanne E, Trijolet JP, Robier A (2011) Midmodiolar reconstruction as a valuable tool to determine the exact position of the cochlear implant electrode array. Otol Neurotol 32:1075–1081. doi:10.1097/MAO.0b013e318229d4dd

    Article  PubMed  Google Scholar 

  30. Hardy M (1938) The length of the organ of Corti in man. Am J Anat 62:291–311. doi:10.1002/aja.1000620204

    Article  Google Scholar 

  31. Ulehlová L, Voldrich L, Janisch R (1987) Correlative study of sensory cell density and cochlear length in humans. Hear Res 28:149–151. doi:10.1016/0378-5955(87)90045-1

  32. Singla A, Sahni D, Gupta AK, Aggarwal A, Gupta T (2014) Surgical anatomy of the basal turn of the human cochlea as pertaining to cochlear implantation. Otol Neurotol. doi:10.1097/MAO.0000000000000371

    PubMed  Google Scholar 

  33. Würfel W, Lanfermann H, Lenarz T, Majdani O (2014) Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res 316:65–72. doi:10.1016/j.heares.2014.07.013

    Article  PubMed  Google Scholar 

  34. van der Marel KS, Briaire JJ, Wolterbeek R, Snel-Bongers J, Verbist BM, Frijns JHM (2014) Diversity in cochlear morphology and its influence on cochlear implant electrode position. Ear Hear 35:e9–20. doi:10.1097/01.aud.0000436256.06395.63

    Article  PubMed  Google Scholar 

  35. Adunka O, Unkelbach MH, Mack MG, Radeloff A, Gstoettner W (2005) Predicting basal cochlear length for electric-acoustic stimulation. Arch Otolaryngol Head Neck Surg 131:488–492. doi:10.1001/archotol.131.6.488

    Article  PubMed  Google Scholar 

  36. Qt. http://download.qt.io/archive/qt/. Accessed 23 Sept 2015

  37. Visualization Toolkit. http://www.vtk.org/. Accessed 23 Sept 2015

  38. Insight Segmentation and Registration Toolkit. http://www.itk.org. Accessed 23 Sept 2015

  39. Grassroots DICOM. http://gdcm.sourceforge.net. Accessed 23 Sept 2015

  40. Verbist BM, Skinner MW, Cohen LT, Leake PA, James C, Boëx C, Holden TA, Finley CC, Roland PS, Roland JT, Haller M, Patrick JF, Jolly CN, Faltys MA, Briaire JJ, Frijns JHM (2010) Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol 31:722–730. doi:10.1097/MAO.0b013e3181d279e0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wysocki J (1999) Dimensions of the human vestibular and tympanic scalae. Hear Res 135:39–46. doi:10.1016/S0378-5955(99)00088-X

    Article  CAS  PubMed  Google Scholar 

  42. Biedron S, Prescher A, Ilgner J, Westhofen M (2010) The internal dimensions of the cochlear scalae with special reference to cochlear electrode insertion trauma. Otol Neurotol 31:731–7. doi:10.1097/MAO.0b013e3181d27b5e

    Article  PubMed  Google Scholar 

  43. Ferrarini L, Verbist BM, Olofsen H, Vanpoucke F, Frijns JHM, Reiber JHC, Admiraal-Behloul F (2008) Autonomous virtual mobile robot for three-dimensional medical image exploration: application to micro-CT cochlear images. Artif Intell Med 43:1–15. doi:10.1016/j.artmed.2008.03.004

    Article  PubMed  Google Scholar 

  44. Verbist BM, Ferrarini L, Briaire JJ, Zarowski A, Admiraal-Behloul F, Olofsen H, Reiber JHC, Frijns JHM (2009) Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery. Otol Neurotol 30:471–477. doi:10.1097/MAO.0b013e3181a32c0d

    Article  PubMed  Google Scholar 

  45. Adunka OF, Pillsbury HC, Buchman CA (2010) Minimizing intracochlear trauma during cochlear implantation. Adv Otorhinolaryngol 67:96–107. doi:10.1159/000262601

  46. Buytaert JAN, Johnson SB, Dierick M, Salih WHM, Santi PA (2013) MicroCT versus sTSLIM 3D imaging of the mouse cochlea. J Histochem Cytochem 61:382–95. doi:10.1369/0022155413478613

    Article  PubMed  PubMed Central  Google Scholar 

  47. Noble JH, Labadie RF, Majdani O, Dawant BM (2011) Automatic segmentation of intracochlear anatomy in conventional CT. IEEE Trans Biomed Eng 58:2625–2632. doi:10.1109/TBME.2011.2160262

    Article  PubMed  PubMed Central  Google Scholar 

  48. Noble JH, Schuman TA, Wright CG, Labadie RF, Dawant BM (2011) Automatic identification of cochlear implant electrode arrays for post-operative assessment. Proc SPIE 7962:1–20. doi:10.1117/12.878490

    Google Scholar 

Download references

Acknowledgments

The presented work was funded by the German Research Association (DFG) through the cluster of excellence “Hearing4all” and by the German Federal Ministry of Education and Research (BMBF, FKZ 13GW0019E). Responsibility for the contents of this publication lies with the authors. The authors would like to thank Mr. Marcel Kluge for the preparation of the 3D-printed cochlea models and Mr. Christoph Rostkowski and Mr. Max Timm for their help in the validation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jakob Lexow.

Ethics declarations

Conflict of interest

G. Jakob Lexow, Daniel Schurzig, Nils-Claudius Gellrich, Thomas Lenarz, Omid Majdani and Thomas S. Rau declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lexow, G.J., Schurzig, D., Gellrich, NC. et al. Visualization, measurement and modelling of the cochlea using rotating midmodiolar slice planes. Int J CARS 11, 1855–1869 (2016). https://doi.org/10.1007/s11548-016-1374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1374-7

Keywords

Navigation