Skip to main content

Advertisement

Log in

The influence of osteophyte depiction in CT for patient-specific guided hip resurfacing procedures

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

An accurate fit of a patient-specific instrument guide during an intervention is one of the critical factors affecting accuracy of the surgical procedure. In this study, we investigated how well osteophytes, which are abnormal bone growths that form along joints, are depicted in clinical preoperative CT scans and estimated the influence of such depiction errors on the intraoperative accuracy of the guide.

Methods

In 34 hip resurfacing patients, 227 osteophyte surface points on the anterior aspect of the femoral neck were collected intraoperatively, using an optoelectronic navigation system. These points were registered to a preoperative CT scan of the patient, and distances between collected points and segmented virtual bone surface, as well as Hounsfield units for these points, were determined. We simulated the registration error of a patient-specific guide, using a modified registration algorithm, to test placement on the anterior aspect of the femoral neck without removing any osteophytes. This error was then applied to the surgical plan of the femoral central-pin position and orientation for evaluation.

Results

The average distance between the collected points and the segmented surface was 2.6 mm. We estimated the average error for the entrance point of the central-pin to be 0.7 mm in the distal direction and 3.2 mm in the anterior direction. The average orientation error was \(2.8^\circ \) in anteversion.

Conclusions

The depiction of osteophytes in clinical preoperative CT scans for proximal femurs can be unreliable and can possibly result in significant intraoperative instrument alignment errors during image-guided surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G, Rau G, Staudte HW (1998) Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res 354:28–38

    Article  PubMed  Google Scholar 

  2. Putzier M, Strube P, Cecchinato R, Lamartina C, Hoff E (2014) A new navigational tool for pedicle screw placement in patients with severe scoliosis: a pilot study to prove feasibility, accuracy, and identify operative challenges. J Spinal Disord Tech [Epub ahead of print]

  3. Victor J, Premanathan A (2013) Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study. Bone Joint J 95–B(11 Suppl A):153–158. doi:10.1302/0301-620X.95B11.32950

    Article  PubMed  Google Scholar 

  4. Kunz M, Ma B, Rudan JF, Ellis RE, Pichora DR (2013) Image-guided distal radius osteotomy using patient-specific instrument guides: a novel surgical technique. J Hand Surg A 38(8):1618–1624. doi:10.1016/j.jhsa.2013.05.018

    Article  Google Scholar 

  5. Bellanova L, Paul L, Docquier PL (2013) Surgical guides (patient-specific instruments) for pediatric tibial bone sarcoma resection and allograft reconstruction. Sarcoma 2013:787653. doi:10.1155/2013/787653

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kunz M, Waldman SD, Rudan JF, Bardana DD, Stewart AJ (2011) Computer-assisted mosaic arthroplasty using patient-specific instrument guides. Knee Surg Sports Traumatol Arthrosc 20(5):857–861. doi:10.1007/s00167-011-1638-2

    Article  PubMed  Google Scholar 

  7. Kunz M, Rudan JF, Xenoyannis GL, Ellis RE (2010) Computer-assisted hip resurfacing using individualized drill templates. J Arthroplasty 25(4):600–606. doi:10.1016/j.arth.2009.03.023

    Article  PubMed  Google Scholar 

  8. Sakai T, Hanada T, Murase T, Kitada M, Hamada H, Yoshikawa H, Sugano N (2014) Validation of patient specific surgical guides in total hip arthroplasty. Int J Med Robot 10(1):113–120. doi:10.1002/rcs.1547

    Article  PubMed  Google Scholar 

  9. Boonen B, Schotanus MG, Kort NP (2012) Preliminary experience with the patient-specific templating total knee arthroplasty. Acta Orthop 83(4):387–393. doi:10.3109/17453674.2012.711700

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr (2012) Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res 470(1):99–107. doi:10.1007/s11999-011-1996-6

    Article  PubMed Central  PubMed  Google Scholar 

  11. Moopanar TR, Amaranath JE, Sorial RM (2014) Component position alignment with patient-specific jigs in total knee arthroplasty. ANZ J Surg 84(9):628–632. doi:10.1111/ans.12674

    Article  PubMed  Google Scholar 

  12. Levy JC, Everding NG, Frankle MA, Keppler LJ (2014) Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty. J Shoulder Elb Surg 23(10):1563–1567. doi:10.1016/j.jse.2014.01.051

    Article  Google Scholar 

  13. Walch G, Vezeridis PS, Boileau P, Deransart P, Chaoui J (2014) Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study. J Shoulder Elb Surg. doi:10.1016/j.jse.2014.05.029

  14. Leeuwen JA, Grøgaard B, Nordsletten L, Röhrl SM (2014) Comparison of planned and achieved implant position in total knee arthroplasty with patient-specific positioning guides. Acta Orthop 11:1–6

    Google Scholar 

  15. Cavaignac E, Pailhé R, Laumond G, Murgier J, Reina N, Laffosse JM, Bérard E, Chiron P (2014) Evaluation of the accuracy of patient-specific cutting blocks for total knee arthroplasty: a meta-analysis. Int Orthop [Epub ahead of print]

  16. Voleti PB, Hamula MJ, Baldwin KD, Lee GC (2014) Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty 29(9):1709–1712. doi:10.1016/j.arth.2014.01.039

  17. Turmezei TD, Poole KE (2011) Computed tomography of subchrondral bone and osteophytes in hip osteoarthritis: the shape of things to come? Front Endocrinol (Lausanne) 13(2):97. doi:10.3389/fendo.2011.00097

    Google Scholar 

  18. Gelse K, Soeder S, Eger W, Dietmar T, Aigner T (2003) Osteophyte development—molecular characterization of different stages. Osteoarthr Cartil 11(2):141–148

    Article  CAS  PubMed  Google Scholar 

  19. Seon J-K, Park H-W, Yoo S-H, Song E-K (2014) Assessing the accuracy of patient-specific guides for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc [Epub ahead of print]

  20. Kunz M, Rudan JF, Wood GC, Ellis RE (2011) Registration stability of physical templates in hip surgery. Stud Health Technol Inform 163:283–289

    PubMed  Google Scholar 

  21. Asada S, Mori S, Matsushita T, Nakagawa K, Tsukamoto I, Akagi M (2014) Comparison of MRI- and CT-based patient-specific guides for total knee arthroplasty. Knee. doi:10.1016/j.knee.2014.08.015

  22. Lombardi AV, Berend KR, Adams JB (2008) Patient-specific approach in total knee arthroplasty. Orthopedics 31(9):927–930. doi:10.3928/01477447-20080901-21

    Article  PubMed  Google Scholar 

  23. Horn BKP (1987) Closed form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(44):629–642

    Article  Google Scholar 

  24. Amstutz HC, Campbell PA, Le Duff MJ (2004) Fracture of the neck of the femur after surface arthroplasty of the hip. J Bone Joint Surg 86–A(9):1874–1877

    PubMed  Google Scholar 

  25. Siebel T, Maubach S, Morlock MM (2006) Lessons learned from early clinical experience and results of 300 ASR hip resurfacing implantations. Proc Inst Mech Eng [H] 220(2):345–353

    Article  CAS  Google Scholar 

  26. Aigner T, Sachsse A, Gebhard PM, Roach HI (2006) Osteoarthritis: pathobiology—targets and ways for therapeutic intervention. Adv Drug Deliv Rev 58(2):128–149. doi:10.1016/j.addr.2006.01.020

    Article  CAS  PubMed  Google Scholar 

  27. Paz ME, Carter LC, Westesson P-L, Katzberg RW, Tallents R, Subtelny D, Goldin B (1990) CT density of the TMJ disk: correlation with histologic observations of hyalinization, metaplastic cartilage, and calcification in autopsy specimens. Am J Orthopd Dento Fac Orthop 98:354–357

    Article  CAS  Google Scholar 

  28. Baxter BS, Sorenson JA (1981) Factors affecting the measurement of size and CT number in computed tomography. Invest Radiol 16:337–341

    Article  CAS  PubMed  Google Scholar 

  29. Van den Broeck J, Wirix-Speetjens R, Sloten JS (2015) Preoperative analysis of the stability of fit of a patient-specific surgical guide. Comp Methods Biomech Biomed Eng 18(1):38–47. doi:10.1080/10255842.2013.774383

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Paul St. John and Joan Willison, for their technical support and for collection of data, and the surgical and perioperative teams of Kingston General Hospital. This research was supported in part by Canadian Institutes of Health Research and the Natural Sciences and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kunz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunz, M., Balaketheeswaran, S., Ellis, R.E. et al. The influence of osteophyte depiction in CT for patient-specific guided hip resurfacing procedures. Int J CARS 10, 717–726 (2015). https://doi.org/10.1007/s11548-015-1200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1200-7

Keywords

Navigation