Skip to main content

Advertisement

Log in

An evaluation of image descriptors combined with clinical data for breast cancer diagnosis

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose   

Breast cancer computer-aided diagnosis (CADx) may utilize image descriptors, demographics, clinical observations, or a combination. CADx performance was compared for several image features, clinical descriptors (e.g. age and radiologist’s observations), and combinations of both kinds of data. A novel descriptor invariant to rotation, histograms of gradient divergence (HGD), was developed to deal with round-shaped objects, such as masses. HGD was compared with conventional CADx features.

Method

HGD and 11 conventional image descriptors were evaluated using cases from two publicly available mammography data sets, the digital database for screening mammography (DDSM) and the breast cancer digital repository (BCDR), with 1,762 and 362 instances, respectively. Three experiments were done for each data set according to the type of lesion (i.e., all lesions, masses, and calcifications), resulting in six scenarios. For each scenario, 100 training and test sets were generated via resampling without replacement and five machine learning classifiers were used to assess the diagnostic performance of the descriptors.

Results

Clinical descriptors outperformed image descriptors in the DDSM sample (three out of six scenarios), and combining the two kind of descriptors was advantageous in five out of six scenarios. HGD was the best descriptor (or comparable to best) in 8 out of 12 scenarios, demonstrating promising capabilities to describe masses.

Conclusions

The combination of clinical data and image descriptors was advantageous in most mammography CADx scenarios. A new descriptor based on the divergence of the gradient (HGD) was demonstrated to be a feasible predictor of breast masses’ diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. BCDR-F01 from BCDR is now available for download at http://bcdr.inegi.up.pt.

References

  1. Matheus BR, Schiabel H (2011) Online mammographic images database for development and comparison of CAD schemes. J Digit Imaging 24(3):500–506. doi:10.1007/s10278-010-9297-2

    Article  PubMed  Google Scholar 

  2. Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) INbreast: toward a full-field digital mammographic database. Acad Radiol 19(2):236–248

    Article  PubMed  Google Scholar 

  3. Nelson HD, Tyne K, Naik A, Bougatsos C, Chan BK, Humphrey L (2009) Screening for breast cancer: systematic evidence review update for the US Preventive Services Task Force. Ann Intern Med 151(10):727

    Article  PubMed  Google Scholar 

  4. Tabar L, Vitak B, Chen THH, Yen AMF, Cohen A, Tot T, Chiu SYH, Chen SLS, Fann JCY, Rosell J, Fohlin H, Smith RA, Duffy SW (2011) Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology 260(3):658–663. doi:10.1148/radiol.11110469

    Article  PubMed  Google Scholar 

  5. Ramos-Pollán R, Guevara-López M, Suárez-Ortega C, Díaz-Herrero G, Franco-Valiente J, Rubio-del-Solar M, de Posada González N, Vaz M, Loureiro J, Ramos I (2011) Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J Med Syst 1:11. doi:10.1007/s10916-011-9693-2

    Google Scholar 

  6. Warren Burhenne LJ, Wood SA, D’Orsi CJ, Feig SA, Kopans DB, O’Shaughnessy KF, Sickles EA, Tabar L, Vyborny CJ, Castellino RA (2000) Potential contribution of computer-aided detection to the sensitivity of screening mammography. Radiology 215(2):554–562

    PubMed  CAS  Google Scholar 

  7. Cheng HD, Cai X, Chen X, Hu L, Lou X (2003) Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recogn 36(12):2967–2991. doi:10.1016/s0031-3203(03)00192-4

    Article  Google Scholar 

  8. Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN (2006) Approaches for automated detection and classification of masses in mammograms. Pattern Recogn 39(4):646–668. doi:10.1016/j.patcog.2005.07.006

    Article  Google Scholar 

  9. Christoyianni I, Dermatas E, Kokkinakis G (2000) Fast detection of masses in computer-aided mammography. IEEE Signal Proc Mag 17(1):54–64

    Article  Google Scholar 

  10. Huo ZM, Giger ML, Vyborny C, Wolverton DE, Schmidt RA, Doi K (1998) Automated computerized classification of malignant and benign masses on digitized mammograms. Acad Radiol 5(3):155–168

    Article  PubMed  CAS  Google Scholar 

  11. Constantinidis AS, Fairhurst MC, Rahman AFR (2001) A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms. Pattern Recogn 34(8):1527–1537

    Article  Google Scholar 

  12. Belkasim SO, Shridhar M, Ahmadi M (1991) Pattern-recognition with moment invariants—a comparative-study and new results. Pattern Recogn 24(12):1117–1138

    Article  Google Scholar 

  13. Yu SY, Guan L (2000) A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Trans Med Imaging 19(2):115–126

    Article  PubMed  CAS  Google Scholar 

  14. Dhawan AP, Chitre Y, KaiserBonasso C, Moskowitz M (1996) Analysis of mammographic microcalcifications using gray-level image structure features. IEEE Trans Med Imaging 15(3): 246–259

    Google Scholar 

  15. Wang D, Shi L, Ann Heng P (2009) Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 72(13–15):3296–3302. doi:10.1016/j.neucom.2009.02.015

    Article  Google Scholar 

  16. Dua S, Singh H, Thompson HW (2009) Associative classification of mammograms using weighted rules. Expert Syst Appl 36(5):9250–9259. doi:10.1016/j.eswa.2008.12.050

    Article  PubMed  Google Scholar 

  17. Sahiner B, Chan HP, Petrick N, Helvie MA, Hadjiiski LM (2001) Improvement of mammographic mass characterization using spiculation measures and morphological features. Med Phys 28(7):1455–1465. doi:10.1118/1.1381548

    Article  PubMed  CAS  Google Scholar 

  18. Sahiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM (1998) Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis. Med Phys 25(4):516–526

    Article  PubMed  CAS  Google Scholar 

  19. Sahiner B, Chan HP, Petrick N, Wei DT, Helvie MA, Adler DD, Goodsitt MM (1996) Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 15(5):598–610

    Article  PubMed  CAS  Google Scholar 

  20. Haralick RM, Shanmuga K, Dinstein I (1973) Textural features for image classification. IEEE T Syst Man Cyb 3(6):610–621

    Article  Google Scholar 

  21. Kim JK, Park HW (1999) Statistical textural features for detection of microcalcifications in digitized mammograms. IEEE Trans Med Imaging 18(3):231–238

    Article  PubMed  CAS  Google Scholar 

  22. Buciu I, Gacsadi A (2010) Directional features for automatic tumor classification of mammogram images. Biomed Signal Process Control 6(4):370–378

    Article  Google Scholar 

  23. Ferreira CBR, DbL Borges (2003) Analysis of mammogram classification using a wavelet transform decomposition. Pattern Recogn Lett 24(7):973–982. doi:10.1016/s0167-8655(02)00221-0

    Article  Google Scholar 

  24. Rashed EA, Ismail IA, Zaki SI (2007) Multiresolution mammogram analysis in multilevel decomposition. Pattern Recogn Lett 28(2):286–292. doi:10.1016/j.patrec.2006.07.010

    Article  Google Scholar 

  25. Dhawan AP, Chitre Y, Kaiser-Bonasso C (1996) Analysis of mammographic microcalcifications using gray-level image structure features. IEEE Trans Med Imaging 15(3):246–259

    Article  PubMed  CAS  Google Scholar 

  26. Soltanian-Zadeh H, Rafiee-Rad F, Pourabdollah-Nejad DS (2004) Comparison of multiwavelet, wavelet, Haralick, and shape features for microcalcification classification in mammograms. Pattern Recogn 37(10):1973–1986. doi:10.1016/j.patcog.2003.03.001

    Article  Google Scholar 

  27. Meselhy Eltoukhy M, Faye I, Belhaouari Samir B (2010) A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput Biol Med 40(4):384–391. doi:10.1016/j.compbiomed.2010.02.002

    Article  PubMed  Google Scholar 

  28. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and, pattern recognition, vol 881, pp 886–893. doi:10.1109/cvpr.2005.177

  29. Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer P (2000.) The digital database for screening mammography. In: Proceedings of the 5th international workshop on digital mammography, pp 212–218

  30. Ramos Pollán R, Rubio del Solar M, Franco Valiente JM, Moriche JE, Gonzalez de Posada N, Valdes Torres JA, Pires Vaz MA, Guevara López MA (2010) Exploiting e-infrastructures for medical image storage and analysis: a grid application for mammography CAD. In: Hierlemann A (ed) Proceedings of the 7th IASTED international conference on, biomedical engineering

  31. de Oliveira JEE, Machado AMC, Chavez GC, Lopes APB, Deserno TM (2010) MammoSys: a content-based image retrieval system using breast density patterns. Comput Methods Programs Biomed 99(3):289–297. doi:10.1016/j.cmpb.2010.01.005

    Google Scholar 

  32. Oliveira JEE, Gueld MO, Araújo AA, Ott B, Deserno TM (2008) Towards a standard reference database for computer-aided mammography. In: Proceedings SPIE 6915, medical imaging 2008: computer-aided diagnosis, 69151Y, pp 1Y1–1Y9. doi:10.1117/12.770325

  33. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing. Prentice Hall, New Jersey

    Google Scholar 

  34. Sheshadri HS, Kandaswamy A (2007) Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms. Comput Med Imaging Graph 31(1):46–48. doi:10.1016/j.compmedimag.2006.09.015

    Article  PubMed  CAS  Google Scholar 

  35. Kinoshita S, Azevedo-Marques P, Pereira R Jr, Rodrigues J, Rangayyan R (2007) Content-based retrieval of mammograms using visual features related to breast density patterns. J Digit Imaging 20(2):172–190. doi:10.1007/s10278-007-9004-0

    Article  PubMed  Google Scholar 

  36. Hu MK (1962) Visual-pattern recognition by moment invariants. Ire T Inform Theor 8(2):179–187

    Article  Google Scholar 

  37. Teague MR (1980) Image-analysis via the general-theory of moments. J Opt Soc Am 70(8):920–930

    Article  Google Scholar 

  38. Wei C-H, Chen SY, Liu X (2011) Mammogram retrieval on similar mass lesions. Comput Methods Programs Biomed 106(3):234–248. doi:10.1016/j.cmpb.2010.09.002

    Article  Google Scholar 

  39. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–179. doi:10.1016/s0146-664x(75)80008-6

    Article  Google Scholar 

  40. Daugman JG (1985) Uncertainty relation for resolution in space, spatial-frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A 2(7):1160–1169

    Article  PubMed  CAS  Google Scholar 

  41. Candes EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun Pure Appl Math 57(2):219–266

    Article  Google Scholar 

  42. Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899. doi:10.1137/05064182X

    Article  Google Scholar 

  43. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. doi:10.1023/b:visi.0000029664.99615.94

    Article  Google Scholar 

  44. Deniz O, Bueno G, Salido J, De la Torre F (2011) Face recognition using histograms of oriented gradients. Pattern Recogn Lett 32(12):1598–1603

    Article  Google Scholar 

  45. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18

    Article  Google Scholar 

  46. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    Google Scholar 

  47. Andreadis II, Spyrou GM, Nikita KS (2011) A comparative study of image features for classification of breast microcalcifications. Meas Sci Technol 22(11):114005–114013. doi:10.1088/0957-0233/22/11/114005

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like expressing their gratitude to the Department of Radiology at Hospital São João Porto, Portugal, who provided the data and assisted in the validation of the data sets used in this research. Prof. Guevara acknowledges POPH—QREN—Tipologia 4.2—Promotion of scientific employment funded by the ESF and MCTES, Portugal. Finally, the authors acknowledge TM Deserno, Dept. of Medical Informatics, RWTH Aachen, Germany, for providing the PNG images of the DDSM database.

Conflict of Interest

The authors declare that they have no conflict of interest. Ethical standards All experiments were performed with public data from previous studies, and therefore, no ethical violations may result from the experiments reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Moura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 71 KB)

Supplementary material 2 (pdf 135 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moura, D.C., Guevara López, M.A. An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int J CARS 8, 561–574 (2013). https://doi.org/10.1007/s11548-013-0838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0838-2

Keywords

Navigation