Skip to main content

Advertisement

Log in

Accuracy analysis in MRI-guided robotic prostate biopsy

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To assess retrospectively the clinical accuracy of an magnetic resonance imaging-guided robotic prostate biopsy system that has been used in the US National Cancer Institute for over 6 years.

Methods

Series of 2D transverse volumetric MR image slices of the prostate both pre (high-resolution T2-weighted)- and post (low-resolution)- needle insertions were used to evaluate biopsy accuracy. A three-stage registration algorithm consisting of an initial two-step rigid registration followed by a B-spline deformable alignment was developed to capture prostate motion during biopsy. The target displacement (distance between planned and actual biopsy target), needle placement error (distance from planned biopsy target to needle trajectory), and biopsy error (distance from actual biopsy target to needle trajectory) were calculated as accuracy assessment.

Results

A total of 90 biopsies from 24 patients were studied. The registrations were validated by checking prostate contour alignment using image overlay, and the results were accurate to within 2 mm. The mean target displacement, needle placement error, and clinical biopsy error were 5.2, 2.5, and 4.3 mm, respectively.

Conclusion

The biopsy error reported suggests that quantitative imaging techniques for prostate registration and motion compensation may improve prostate biopsy targeting accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American Cancer Society (2012) Cancer facts and figures. http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-031941.pdf. Accessed 9 Jan 2013

  2. Tempany C, Straus S, Hata N, Haker S (2008) MR-guided prostate interventions. J Magn Reson Imaging 27:356–367

    Article  PubMed  Google Scholar 

  3. Kronz JD, Allan CH, Shaikh AA, Epstein JI (2001) Predicting cancer following a diagnosis of high grade prostatic intraepithelial neoplasia on needle biopsy: data on men with more than one follow-up biopsy. Am J Surg Pathol 25(8):1079–1085

    Article  PubMed  CAS  Google Scholar 

  4. Wefer A, Hricak H, Vigneron D, Coakley F, Lu Y, Wefer J, Mueller-Lisse U, Carroll P, Kurhanewicz J (2000) Sextant localization of prostate cancer: comparison of sextant 16 biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 163(2):400–404

    Google Scholar 

  5. Taira AV, Merrick GS, Galbreath RW, Andreini H, Taubenslag W, Curtis R, Butler WM, Adamovich E, Wallner KE (2010) Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis 13(1):71–77

    Article  PubMed  CAS  Google Scholar 

  6. Terris MK, Wallen EM, Stamey TA (1997) Comparison of mid-lobe versus lateral systematic sextant biopsies in the detection of prostate cancer. Urologia Internationalis 59(4):239–242

    Article  PubMed  CAS  Google Scholar 

  7. Terris MK (2009) Strategies for repeat prostate biopsies. Curr Urol Rep 10(3):172–178

    Article  PubMed  Google Scholar 

  8. Welch H, Fisher E, Gottlieb D, Barry M (2007) Detection of prostate cancer via biopsy in the medicare-SEER population during the PSA era. J Nat Cancer Inst 99(18):1395

    Article  PubMed  Google Scholar 

  9. Futterer JJ, Barentsz JO (2012) MRI-guided and robotic-assisted prostate biopsy. Curr Opin Urol 22(4):316–319

    Article  PubMed  Google Scholar 

  10. Krieger A, Susil R, Menard C, Coleman J, Fichtinger G, Atalar E, Whitcomb L (2005) Design of novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng 52(2):306–331

    Article  PubMed  Google Scholar 

  11. Krieger A, Iordachita I, Guion P, Singh AK, Kaushal A, Menard C, Pinto PA, Camphausen K, Fichtinger G, Whitcomb LL (2011) An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 58(11):3049–3060

    Article  PubMed  Google Scholar 

  12. Kaplan I, Oldenburg NE, Meskell P, Blake M, Church P, Holupk EJ (2002) Real time MRI-ultrasound image guided stereotactic prostate biopsy. Magn Reson Imag 20:295–299

    Article  Google Scholar 

  13. Hirose M, Bharatha A, Hata N, Zou KH, Warfield SK, Cormack RA, D’Amico A, Kikinis R, Jolesz FA, Tempany CMC (2002) Quantitative MR imaging assessment of prostate gland deformation before and during MR imaging-guided brachytherapy. Acad Radiol 9(8):906–912

    Article  PubMed  Google Scholar 

  14. Reynier C, Troccaz J, Fourneret P, Dusserre A, Gay-Jeune C, Descotes JL, Bolla M, Giraud JY (2004) MRI/TRUS data fusion for prostate brachytherapy preliminary results. Med Phys 31(6):1568–1575

    Article  PubMed  Google Scholar 

  15. Brock KK, Nichol AM, Ménard C, Moseley JL, Warde PR, Catton CN, Jaffray DA (2008) Accuracy and sensitivity of finite element model-based deformable registration of the prostate. Med Phys 35(9):4019–4025

    Article  PubMed  Google Scholar 

  16. Alterovitz R, Goldberg K, Pouliot J, Hsu ICJ, Kim Y, Noworolski SM, Kurhanewicz J (2006) Registration of MR prostate images with biomechanical modeling and nonlinear parameter estimation. Med Phys 33(2):446–454

    Article  PubMed  Google Scholar 

  17. Misra S, Macura K, Ramesh K, Okamura A (2009) The importance of organ geometry and boundary constraints for planning of medical interventions. Med Eng Phys 31(2):195–206

    Article  PubMed  CAS  Google Scholar 

  18. Oguro S, Tokuda J, Elhawary H, Haker S, Kikinis R, Tempany C, Hata N (2009) MRI signal intensity based B-spline nonrigid registration for pre- and intraoperative imaging during prostate brachytherapy. J Magn Reson Imaging 30(5):1052–1058

    Article  PubMed  Google Scholar 

  19. Fei B, Wheaton A, Lee Z, Duerk JL, Wilson DL (2002) Automatic MR volume registration and its evaluation for the pelvis and prostate. Phys Med Biol 47(5):823–838

    Article  PubMed  Google Scholar 

  20. Xu H, Lasso A, Vikal S, Guion P, Krieger A, Kaushal A, Whitcomb LL, Fichtinger G, (2010) MRI-guided robotic prostate biopsy: a clinical accuracy validation. MICCAI 2010 Beijing, China LNCS 6363/2010, pp 383–391

  21. Tustison NJ, Gee JC (2009) N4ITK: Nick’s N3 ITK implementation for MRI bias field correction. Insight J. http://hdl.handle.net/10380/3053. Accessed 9 Jan 2013

  22. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxes D, Whitaker R (2002) Engineering and algorithm design for an image processing API: a technical report on ITK—the insight toolkit. Stud Health Technol Inform 85:586–592

  23. Pieper S, Halle M, Kikinis R (2004) 3D slicer. In: IEEE international symposium on biomedical imaging: from nano to macro, pp 632–635

  24. Sang-Eun S, Cho NB, Iordachita II, Guion P, Fichtinger G, Kaushal A, Camphausen K, Whitcomb LL (2012) Biopsy needle artifact localization in MRI-guided robotic transrectal prostate intervention. IEEE Trans Biomed Eng 59(7):1902–1911

    Google Scholar 

  25. Ploussard G, Epstein JI, Montironi R, Carroll PR, Wirth M, Grimm MO, Bjartell AS, Montorsi F, Freedland SJ, Erbersdobler A, van der Kwast TH (2011) The contemporary concept of significant versus insignificant prostate cancer. Euro Urol 60:291–303

    Article  Google Scholar 

  26. Tadayyon H, Lasso A, Kaushal A, Guion P, Fichtinger G (2011) Target motion tracking in MRI-guided transrectal robotic prostate biopsy. IEEE Trans Biomed Eng 58(11):3135–3142

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by: US National Institutes of Health (NIH) 5R01CA111288-04 and 5R01EB002963-05, Canadian Ontario Graduate Scholarship (OGS), and Applied Cancer Research Unit program of Cancer Care Ontario with funds provided by the Ontario Ministry of Health and Long-Term Care. Gabor Fichtinger was funded as a Cancer Ontario Research Chair. Conflict of interest    None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Lasso, A., Guion, P. et al. Accuracy analysis in MRI-guided robotic prostate biopsy. Int J CARS 8, 937–944 (2013). https://doi.org/10.1007/s11548-013-0831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0831-9

Keywords

Navigation