Skip to main content

Advertisement

Log in

Performance evaluation of a C-Arm CT perfusion phantom

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose Brain perfusion measurement in stroke patients provides important information on the infarct area and state of involved tissue. Interventional C-Arm angiography systems can provide perfusion measurements. A CT perfusion phantom was developed for C-Arm perfusion imaging to test and evaluate this method and to aid in the design and validation of scan protocols.

Methods A phantom test device was designed based on the anatomy of the human head. Four feeding arteries divided into sixteen sub-branches that lead into a sintered board simulating brain parenchyma. Perfusion measurements were performed using two conventional clinical CT scanners as the gold standard and with a C-Arm CT system to test and compare the implementations. The phantom’s input parameters, contrast medium and flow properties were varied. A cerebral perfusion deficit was simulated by occlusion of a feeding artery tube.

Results CT perfusion maps of the sintered board brain tissue surrogate were computed and qualitatively compared for both conventional CT and C-Arm CT systems. A characteristic flow pattern of the tissue board was identifiable in both modalities. The characteristic flow pattern of the resulting perfusion maps is reproducible. The calculated flow and volume were directly related.

Conclusions A new CT perfusion phantom was developed and tested. This phantom is an appropriate model for CT-based tissue perfusion measurements in both conventional CT scanners and C-Arm CT scanners. The influence of input parameter changes can be visualized. Perfusion deficits after occlusion of a feeding artery are readily simulated and identified with CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mackay J, Mensah GA, Mendis S, Greenlund K, Organization WH (2004) The atlas of heart disease and stroke. World Health Organization, Geneva

  2. Adams HP, del Zoppo G, Alberts MJ et al (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association. Stroke 38(5):1655–1711

    Google Scholar 

  3. Ahmed AS, Zellerhoff M, Strother CM, Pulfer KA, Redel T, Deuerling-Zheng Y, Royalty K, Consigny D, Niemann DB (2009) C-Arm CT measurement of cerebral blood volume: an experimental study in canines. AJNR Am J Neuroradiol 30(5):917–922

    Article  PubMed  CAS  Google Scholar 

  4. Bley T, Strother CM, Pulfer K, Royalty K, Zellerhoff M, Deuerling-Zheng Y, Bender F, Consigny D, Yasuda R, Niemann D (2010) C-arm CT measurement of cerebral blood volume in ischemic stroke: an experimental study in canines. AJNR Am J Neuroradiol 31(3):536–540

    Article  PubMed  CAS  Google Scholar 

  5. Bogunovic H, Loncaric S (2005) Estimating perfusion using X-ray angiography. In: Proceedings of the 4th international symposium on image and signal processing and analysis, 2005. ISPA 2005. IEEE, pp 147–150

  6. Ganguly A, Fieselmann A, Marks M, Rosenberg J, Boese J, Deuerling-Zheng Y, Straka M, Zaharchuk G, Bammer R, Fahrig R (2011) Cerebral CT perfusion using an interventional C-Arm imaging system: cerebral blood flow measurements. Am J Neuroradiol 32(8):1525–1531

    Article  PubMed  CAS  Google Scholar 

  7. Zellerhoff M, Deuerling-Zheng Y, Strother CM, Ahmed A, Pulfer K, Redel T, Royalty K, Grinde J, Consigny D (2009) Measurement of cerebral blood volume using angiographic C-arm systems. Proc of SPIE 7262(1):72620H-1–72620H-8

  8. Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Boese J, Zellerhoff M, Schwab S, Doerfler A (2011) Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT. Eur Radiol 21(4):882–889

    Google Scholar 

  9. Serowy S, Gurvit O, Skalej M, Rose G (2007) A Jacobi-like solution to the model based tomographic X-ray perfusion imaging. IEEE Nuclear Science Symposium Conference Record, 2007. NSS ’07. IEEE, pp 3085–3088

  10. Serowy S, Rose G (2008) Modellbasierte Perfusionsbildgebung am Röntgen-C-Arm. CURAC 2008

  11. Serowy S, Skalej M, Rose G (2008) A dedicated storage scheme for the system matrix to the model based tomographic X-ray perfusion imaging. IEEE Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE, pp 4182–4183

  12. Neukirchen C, Rose G (2005) Parameter estimation in a model based approach for tomographic perfusion measurement. 2005 IEEE Nuclear Science Symposium Conference Record. IEEE, pp 2235–2239

  13. Haberland U, Cordes J, Lell M, Abolmaali N, Klotz E (2009) A biological phantom for contrast-media-based perfusion studies with CT. Invest Radiol 44(10):676–682

    Google Scholar 

  14. Haberland U, Klotz E, Abolmaali N (2010) Performance assessment of a new dynamic scan mode for perfusion computed tomography using a biological phantom. San Diego, pp 76221F-1–76221F-8

  15. Maciak A, Kronfeld A, Müller-Forell W, Wille C, Kempski O, Stoeter P (2010) Ein kapillarbasiertes Phantom zur Simulation der Gehirnperfusion mit der Magnet-Resonanz-Tomografie. Fortschr Röntgenstr 182(10):883–890

    Article  CAS  Google Scholar 

  16. Russell K, Blazeski A, Dannecker K, Lee QY, Holscher C, Donahue C, van Kampen W (2010) Dynamic CT head phantom for perfusion and angiography studies. San Diego, p 76261Y–76261Y-5

  17. Klotz E, König M (1999) Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol 30(3):170–184

    Article  PubMed  CAS  Google Scholar 

  18. Konerth LC (2009) Entwicklung eines Perfusionsmodells für quantitative und qualitative Messungen mit Perfusions-CT. Dissertation Erlangen, Nürnberg

  19. Kroll A (2004) Quantifizierung der Perfusion mit Arterial Spin-Labeling Techniken in der Magnetresonanz-Tomographie an Hand eines Perfusionsphantoms. Thesis doctoral University, Heidelberg

  20. Moll K-J, Moll M (2006) Anatomie. Kurzlehrbuch zum Gegenstandskatalog 1, 17. A. Urban & Fischer Bei Elsevier

  21. Buxton RB (2001) Introduction to functional magnetic resonance imaging: principles and techniques, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  22. von Lanz T, Lang J, Wachsmuth W (2004) Praktische anatomie: ein Lehr- und Hilfsbuch der anatomischen Grundlagen ärztlichen Handelns. Bd. 1. Springer, Berlin

    Google Scholar 

  23. Fieselmann A, Kowarschik M, Ganguly A, Hornegger J, Fahrig R (2011) Deconvolution-based CT and MR brain perfusion measurement: theoretical model revisited and practical implementation details. Int J Biomed Imaging 2011:467563

    Article  PubMed  Google Scholar 

  24. Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 137(3):679–686

    PubMed  CAS  Google Scholar 

  25. Fieselmann A, Ganguly A, Deuerling-Zheng Y, Zellerhoff M, Boese J, Hornegger J, Fahrig R (2010) A dynamic reconstruction approach for cerebral blood flow quantification with an interventional C-arm CT. 2010 IEEE international symposium on biomedical imaging: from nano to macro. pp 53–56

  26. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6(12):731–744

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues at the chair for Healthcare Telematics and Medical Engineering and the department of Neuroradiology at the Otto-von-Guericke University of Magdeburg. This research was financially supported by the Federal Ministry of Education and Research (BMBF) in context of the ’INKA’ project and Siemens AG, Healthcare Sector, Germany.

Conflict of interest

Axel Boese, Sebastian Gugel, Steffen Serowy, Jonas Purmann, Georg Rose, Oliver Beuing, Martin Skalej, Research Support (including provision of equipment and materials): Siemens AG, Healthcare Sector, Forchheim, Germany, Details: The manufacturer provided sponsored research funding through channels approved by Otto-von-Guericke University. The manufacturer provided equipment for this study and donated all costs associated with the animal study. Yiannis Kyriakou, Other Financial Relationships: Siemens AG, Healthcare Sector, Details: Employee. Yu Deuerling-Zheng, Other Financial Relationships: Siemens AG, Healthcare Sector, Details: Employee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Boese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boese, A., Gugel, S., Serowy, S. et al. Performance evaluation of a C-Arm CT perfusion phantom. Int J CARS 8, 799–807 (2013). https://doi.org/10.1007/s11548-012-0804-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0804-4

Keywords

Navigation