Skip to main content
Log in

Quasi-linear viscoelastic modeling of arterial wall for surgical simulation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Realistic soft tissue deformation modeling and haptic rendering for surgical simulation require accurate knowledge of tissue material characteristics. Biomechanical experiments on porcine tissue were performed, and a reduced quasi-linear viscoelastic model was developed to describe the strain-dependent relaxation behavior of the arterial wall. This information is used in surgical simulation to provide a realistic sensation of reduction in strength when the user holds a virtual blood vessel strained at different levels.

Materials and methods

Twelve pieces of porcine abdominal artery were tested with uniaxial elongation and relaxation test in both circumferential and longitudinal directions. The mechanical property testing system consists of automated environment control, testing, and data collection mechanism. A combined logarithm and polynomial strain energy equation was applied to model the elastic response of the specimens. The reduced relaxation function was modified by integrating a rational equation as a corrective factor to precisely describe the strain-dependent relaxation effects.

Results

The experiments revealed that (1) stress is insensitive to strain rate in arterial tissue when the loading rate is low, and (2) the rate of stress relaxation of arterial wall is highly strain dependent. The proposed model can accurately represent the experimental data. Stress–strain function derived from the combined strain energy function is able to fit the tensile experimental data with R 2 equals to 0.9995 in circumferential direction and 0.999 in longitudinal direction. Modified reduced relaxation function is able to model the strain-dependent relaxation with R 2 equals to 0.9686 in circumferential direction and 0.988 in longitudinal direction.

Conclusion

The proposed model, based on extensive biomechanical experiments, can be used for accurate simulation of arterial deformation and haptic rendering in surgical simulation. The resultant model enables stress relaxation status to be determined when subjected to different strain levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basdogan C et al (2004) Haptics in minimally invasive surgical simulation and training. IEEE Comput Graph Appl 24(2): 56–64

    Article  PubMed  Google Scholar 

  2. Chanda A, Kesavadas T (2004) Real-time volume haptic rendering of non-linear viscoelastic behavior of soft tissue through dynamic atomic unit approach. Stud Health Technol Inform 98: 49–55

    PubMed  CAS  Google Scholar 

  3. Takamizawa K, Hayashi K (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20(1): 7–17

    Article  PubMed  CAS  Google Scholar 

  4. Tanaka TT, Fung YC (1974) Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J Biomech 7(4): 357–370

    Article  PubMed  CAS  Google Scholar 

  5. Hayashi K et al (1981) Mechanical properties of aortas and pulmonary arteries of calves implanted with cardiac prostheses. J Biomech 14(3): 173–182

    Article  PubMed  CAS  Google Scholar 

  6. Veress AI et al (2000) Vascular mechanics of the coronary artery. Z Kardiol 89(Suppl 2): 92–100

    Article  PubMed  Google Scholar 

  7. Chuong CJ FY (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J Biomech 17(1): 35–40

    Article  PubMed  Google Scholar 

  8. Fung YC, (1993) Biomechanics : mechanical properties of living tissues, 2nd edn. Springer, New York, xviii, 568 p

  9. Nichols WW, O’Rourke MF, McDonald DA (2005) McDonald’s blood flow in arteries : theoretic, experimental, and clinical principles, 5th edn. Hodder Arnold, London New York; Distributed in the U.S.A. by Oxford University Press. xii, 607 p

  10. Roach MR, Burton AC (1957) The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 35(8): 681–690

    Article  PubMed  CAS  Google Scholar 

  11. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1–3): 1–48

    Article  Google Scholar 

  12. Chuong CJ, Fung YC (1983) Three-dimensional stress distribution in arteries. J Biomech Eng 105(3): 268–274

    Article  PubMed  CAS  Google Scholar 

  13. Chuong CJ, Fung YC (1986) On residual stresses in arteries. J Biomech Eng 108(2): 189–192

    Article  PubMed  CAS  Google Scholar 

  14. Fung YC, Liu SQ, Zhou JB (1993) Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J Biomech Eng 115(4B): 453–459

    Article  PubMed  CAS  Google Scholar 

  15. Humphrey JD (1999) An evaluation of pseudoelastic descriptors used in arterial mechanics. J Biomech Eng 121(2): 259–262

    Article  PubMed  CAS  Google Scholar 

  16. Chui C et al (2007) Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Med Biol Eng Comput 45(1): 99–106

    Article  PubMed  CAS  Google Scholar 

  17. Spirt AA, Mak AF, Wassell RP (1989) Nonlinear viscoelastic properties of articular cartilage in shear. J Orthop Res 7(1): 43–49

    Article  PubMed  CAS  Google Scholar 

  18. Park S, Ateshian GA (2006) Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response. J Biomech Eng 128(4): 623–630

    Article  PubMed  Google Scholar 

  19. Javad Hazrati Marangalou FGBM (2008) Application of modified superposition model to viscoelastic behavior of periodontal ligment. J Biomed Sci Eng 1(3): 195–199

    Article  Google Scholar 

  20. Hazrati J, Ghalichi F, Mirzakouchaki B (2008) Strain dependent stress relaxation behavior of periodonatal ligament. J Biomech 41(Suppl 1): S471

    Article  Google Scholar 

  21. Provenzano P et al (2001) Nonlinear ligament viscoelasticity. Ann Biomed Eng 29(10): 908–914

    Article  PubMed  CAS  Google Scholar 

  22. Hingorani RV et al (2004) Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann Biomed Eng 32(2): 306–312

    Article  PubMed  Google Scholar 

  23. Pena E, Pena JA, Doblare M (2008) On modelling nonlinear viscoelastic effects in ligaments. J Biomech 41(12): 2659–2666

    Article  PubMed  CAS  Google Scholar 

  24. Sarver JJ, Robinson PS, Elliott DM (2003) Methods for quasi-linear viscoelastic modeling of soft tissue: application to incremental stress-relaxation experiments. J Biomech Eng 125(5): 754–758

    Article  PubMed  Google Scholar 

  25. Drozdov AD (1998) Mechanics of viscoelastic solids. Wiley, New York, xii, 472 p

  26. Drozdov AD (1996) A constitutive model in thermoviscoelasticity. Mech Res Commun 23(5): 543–548

    Article  Google Scholar 

  27. He ZR, Song MS (1993) Elastic behaviors of swollen multiphase networks of SBS and SIS block copolymers. Rheol Acta 32(3): 254–262

    Article  CAS  Google Scholar 

  28. Lally C, Reid AJ, Prendergast PJ (2004) Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann Biomed Eng 32(10): 1355–1364

    Article  PubMed  CAS  Google Scholar 

  29. Lee MC, Haut RC (1989) Insensitivity of tensile failure properties of human bridging veins to strain rate: implications in biomechanics of subdural hematoma. J Biomech 22(6–7): 537–542

    Article  PubMed  CAS  Google Scholar 

  30. Lee MC, Haut RC (1992) Strain rate effects on tensile failure properties of the common carotid artery and jugular veins of ferrets. J Biomech 25(8): 925–927

    Article  PubMed  CAS  Google Scholar 

  31. Mohan D, Melvin JW (1982) Failure properties of passive human aortic tissue. I–uniaxial tension tests. J Biomech 15(11): 887–902

    Article  PubMed  CAS  Google Scholar 

  32. Mohan D, Melvin JW (1983) Failure properties of passive human aortic tissue. II–Biaxial tension tests. J Biomech 16(1): 31–44

    Article  PubMed  CAS  Google Scholar 

  33. Stemper BD, Yoganandan N, Pintar FA (2007) Mechanics of arterial subfailure with increasing loading rate. J Biomech 40(8): 1806–1812

    Article  PubMed  Google Scholar 

  34. Stemper BD, Yoganandan N, Pintar FA (2005) Methodology to study intimal failure mechanics in human internal carotid arteries. J Biomech 38(12): 2491–2496

    Article  PubMed  Google Scholar 

  35. van Dam EA et al (2008) Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech Model Mechanobiol 7(2): 127–137

    Article  PubMed  Google Scholar 

  36. Wu SG, Lee GC (1984) On nonlinear viscoelastic properties of arterial tissue. J Biomech Eng 106(1): 42–47

    Article  PubMed  CAS  Google Scholar 

  37. Yeung ZLaK (2008) The preconditioning and stress relaxation of skin tissue. J Biomed Pharm Eng 2(1): 22–28

    Google Scholar 

  38. Tan HZ et al (1994) Human factors for the design of force-reflecting haptic interfaces. Proc ASME Dyn Syst Control Div DCS-55(1): 353–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Chui, C.K., Yu, R.Q. et al. Quasi-linear viscoelastic modeling of arterial wall for surgical simulation. Int J CARS 6, 829–838 (2011). https://doi.org/10.1007/s11548-011-0560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0560-x

Keywords

Navigation