Skip to main content
Log in

Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner’s electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality.

Methods

The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for “MRI-compatibility” is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures.

Results

Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria.

Conclusion

New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gassert R, Burdet E, Chinzei K (2008) Opportunities and challenges in MR-compatible robotics. IEEE Eng Med Biol Mag 27(3): 15–22

    Article  PubMed  Google Scholar 

  2. Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 9: 351–387

    Article  PubMed  CAS  Google Scholar 

  3. Yu N, Riener R (2006) Review on MR-compatible robotic systems. In: The IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics (BioRob), Pisa, Italy

  4. Chinzei K, Kikinis R, Jolesz FA (1999) MR compatibility of mechatronic devices: design criteria. In: The international conference on medical image computing and computer-assisted intervention

  5. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6): 815–850

    Article  PubMed  CAS  Google Scholar 

  6. Gassert R, Yamamoto A, Chapuis D, Dovat L, Bleuler H, Burdet E (2006) Actuation methods for applications in MR environments. Concepts Magn Reson B Magn Reson Eng 29(4): 191–209

    Article  Google Scholar 

  7. Gassert R, Chapuis D, Bleuler H, Burdet E (2008) Sensors for applications in magnetic resonance environments. IEEE/ASME Trans Mechatron 13(3): 335–344

    Article  Google Scholar 

  8. A primer on medical device interactions with magnetic resonance imaging systems. The US Food and Drug Administration (FDA) (1997)

  9. MR safety and MR compatibility: test guidelines for signa SPTM, Version 1.0. GE Medical Systems (1997)

  10. Standard test method for measurement of magnetically induced displacement force on medical devices in the magnetic resonance environment. ASTM F2052-06e1, 2006

  11. Standard test method for measurement of magnetically induced torque on passive implants in the magnetic resonance environment. ASTM F2213-06, 2006

  12. Standard test method for evaluation of MR image artifacts from passive implants. ASTM F2119-07, 2007

  13. Schaefers G (2008) Testing MR safety and compatibility. IEEE Eng Med Biol Mag 27(3): 23–27

    Article  PubMed  Google Scholar 

  14. Guidance for industry and FDA staff—establishing safety and compatibility of passive implants in the magnetic resonance (MR) environment. The US Food and Drug Administration (FDA) (2008)

  15. Standard test method for evaluation of MR image artifacts from passive implants. ASTM F 2119-01, 2001

  16. Gassert R, Burdet E, Chinzei K (2008) MRI-compatible robotics. IEEE Eng Med Biol Mag 27(3): 12–14

    Article  PubMed  Google Scholar 

  17. Technical description: Intera 1.5T Release 2.5 series, Achieva 1.5T / 3.0T / XR Release 2.5, Panorama HFO Release 2.5 series. Philips Medical Systems Nederland (2007)

  18. Wilde JD, Price D, Williams J, Delakis I, Renaud C (2004) Comparative specications of four 3T MRI systems. Medicines and Healthcare products Regulatory Agency, Department of Health, UK, techniacl report

  19. Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39(2): 300–318

    Article  PubMed  CAS  Google Scholar 

  20. Riener R, Villgrattner T, Kleiser R, Nef T, Kollias S (2005) fMRI-compatible electromagnetic haptic interface. In: The IEEE-EMBS annual international conference of the engineering in medicine and biology society (EMBS), vol 7, pp 7024–7027

  21. Chapuis D (2009) Application of ultrasonic motors to MR-compatible haptic interfaces. PhD Thesis

  22. Graf H, Lauer UA, Schick F (2006) Eddy-current induction in extended metallic parts as a source of considerable torsional moment. J Magn Reson Imaging 23(4): 585–590

    Article  PubMed  Google Scholar 

  23. Camacho CR, Plewes DB, Henkelman RM (1995) Nonsusceptibility artifacts due to metallic objects in MR imaging. J Magn Reson Imaging 5(1): 75–88

    Article  PubMed  CAS  Google Scholar 

  24. Standard test method for measurement of radio frequency induced heating near passive implants during magnetic resonance imaging. ASTM F2182-02a, 2002

  25. Konings MK, Bartels LW, Smits HF, Bakker CJ (2000) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12(1): 79–85

    Article  PubMed  CAS  Google Scholar 

  26. Duru F, Luechinger R, Scheidegger MB, Luscher TF, Boesiger P, Candinas R (2001) Pacing in magnetic resonance imaging environment: clinical and technical considerations on compatibility. Eur Heart J 22(2): 113–124

    Article  PubMed  CAS  Google Scholar 

  27. Lchinger RC (2002) Safety aspects of cardiac pacemakers in magnetic resonance imaging. PhD thesis

  28. Graf H, Steidle G, Schick F (2007) Heating of metallic implants and instruments induced by gradient switching in a 1.5-Tesla whole-body unit. J Magn Reson Imaging 26(5): 1328–1333

    Article  PubMed  Google Scholar 

  29. Dempsey MF, Condon B, Hadley DM (2001) Investigation of the factors responsible for burns during MRI. J Magn Reson Imaging 13(4): 627–631

    Article  PubMed  CAS  Google Scholar 

  30. Buchli R, Boesiger P, Meier D (1988) Heating effects of metallic implants by MRI examinations. Magn Reson Med 7(3): 255–261

    Article  PubMed  CAS  Google Scholar 

  31. Shellock FG, Shellock VJ (1998) Cardiovascular catheters and accessories: ex vivo testing of ferromagnetism, heating, and artifacts associated with MRI. J Magn Reson Imaging 8(6): 1338–1342

    Article  PubMed  CAS  Google Scholar 

  32. Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8(2–3): 80–85

    Article  PubMed  CAS  Google Scholar 

  33. McRobbie DW (2006) MRI from picture to proton, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Wadghiri YZ, Johnson G, Turnbull DH (2001) Sensitivity and performance time in MRI dephasing artifact reduction methods. Magn Reson Med 45(3): 470–476

    Article  PubMed  CAS  Google Scholar 

  35. Franklin KM, Dale BM, Merkle EM (2008) Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson Imaging 27(6): 1443–1447

    Article  PubMed  Google Scholar 

  36. Chinzei K, Yoshinaka K, Washio T (2006) Numerical simulations and lab tests for design of MR-compatible robots. In: The IEEE international conference on robotics and automation (ICRA), Orlando, FL, USA, pp 3819–3824

  37. Diedrichsen J, Shadmehr R (2005) Detecting and adjusting for artifacts in fMRI time series data. Neuroimage 27(3): 624–634

    Article  PubMed  Google Scholar 

  38. Yu N, Murr W, Blickenstorfer A, Kollias S, Riener R (2007) An fMRI compatible haptic interface with pneumatic actuation. In: The IEEE international conference on rehabilitation robotics (ICORR), Nordwijk, The Netherlands

  39. Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L (2007) A new type of motor: pneumatic step motor. IEEE/ASME Trans Mechatron 12(1): 98–106

    Article  Google Scholar 

  40. Gassert R, Moser R, Burdet E, Bleuler H (2006) MRI/fMRI- compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Trans Mechatron 11(2): 216–224

    Article  Google Scholar 

  41. Yu N, Hollnagel C, Blickenstorfer A, Kollias SS, Riener R (2008) Comparison of MRI-compatible mechatronic systems with hydrodynamic and pneumatic actuation. IEEE/ASME Trans Mechatron 13(3): 268–277

    Article  CAS  Google Scholar 

  42. Chapuis D, Gassert R, Ganesh G, Burdet EABE, Bleuler HABH (2006) Investigation of a cable transmission for the actuation of MR compatible haptic interfaces. In: Gassert R (ed) The IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 426–431

  43. Chinzei K, Hata N, Jolesz FA, Kikinis RAKR (2000) Surgical assist robot for the active navigation in the intraoperative mri: hardware design issues. In: Hata N (ed) The IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 1, pp 727–732

  44. Larson BT, Erdman AG, Tsekos NV, Yacoub E, Tsekos PV, Koutlas IG (2004) Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. J Biomech Eng 126(4): 458–465

    Article  PubMed  Google Scholar 

  45. Khanicheh A, Mintzopoulos D, Weinberg B, Tzika AA, Mavroidis C (2008) MR-CHIROD v.2: magnetic resonance compatible smart hand rehabilitation device for brain imaging. IEEE Trans Neural Syst Rehabil Eng 16(1): 91–98

    Article  PubMed  Google Scholar 

  46. Hidler J, Hodics T, Xu B, Dobkin B, Cohen LG (2006) MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing. J Neurosci Methods 155(2): 300–307

    Article  PubMed  Google Scholar 

  47. Gassert R (2006) MR-compatible robotics to investigate human motor control. PhD thesis

  48. Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54(6): 1439–1447

    Article  PubMed  Google Scholar 

  49. Stoianovici D (2005) Multi-imager compatible actuation principles in surgical robotics. Int J Med Robot Comput Assist Surg MRCAS 1(2): 86–100

    Article  CAS  Google Scholar 

  50. Chapuis D, Gassert R, Hartwig V, Vanello N, Bicchi A (2004) Prototype fMRI compatible actuators. Technical report, 30 May 2004

  51. Vanello N, Hartwig V, Tesconi M, Ricciardi E, Tognetti A, Zupone G, Gassert R, Chapuis D, Sgambelluri N, Scilingo EP, Giovannetti G, Positano V, Santarelli MF, Bicchi A, Pietrini P, Rossi DD, Landini L (2008) Sensing glove for brain studies: design and assessment of its compatibility for fMRI with a robust test. IEEE/ASME Trans Mechatron 13(3): 345–354

    Article  Google Scholar 

  52. Mathworks MATLAB user’s guide, 2008

  53. Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 16(1): 217–240

    Article  PubMed  Google Scholar 

  54. Funai A, Fessler JA, Grissom W, Noll DC (2007) Regularized B1+ map estimation in MRI. In: The IEEE international symposium on biomedical imaging: macro to nano, vol 1–3, pp 616–619, 1383

  55. Funai AK, Fessler JA, Yeo DTB, Olafsson VT, Noll DC (2008) Regularized field map estimation in MRI. IEEE Trans Med Imaging 27(10): 1484–1494

    Article  PubMed  Google Scholar 

  56. Baselice F, Ferraioli G, Shabou A (2010) Field map reconstruction in magnetic resonance imaging using bayesian estimation. Sensors 10(1): 266–279

    Article  Google Scholar 

  57. McRobbie DW, Quest RA (2002) Effectiveness and relevance of MR acceptance testing: results of an 8 year audit. Br J Radiol 75(894): 523–531

    PubMed  CAS  Google Scholar 

  58. Koivula A (2002) Magnetic resonance image distortions due to artificial macroscopic objects—an example: correction of image distortion caused by an artificial hip prosthesis. PhD thesis

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningbo Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, N., Gassert, R. & Riener, R. Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging. Int J CARS 6, 473–488 (2011). https://doi.org/10.1007/s11548-010-0528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0528-2

Keywords

Navigation