Skip to main content

Advertisement

Log in

Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface

  • Computer Application
  • Published:
La radiologia medica Aims and scope Submit manuscript

A Correction to this article was published on 03 March 2023

This article has been updated

Abstract

Purpose

To evaluate the potential of subregional radiomics as a novel tumor marker in predicting epidermal growth factor receptor (EGFR) mutation status and response to EGFR-tyrosine kinase inhibitor (TKI) therapy in NSCLC patients with brain metastasis (BM).

Materials and methods

We included 230 patients from center 1, and 80 patients were included from center 2 to form a primary and external validation cohort, respectively. Patients underwent contrast-enhanced T1-weighted and T2-weighted MRI scans before treatment. The individual- and population-level clustering was used to partition the peritumoral edema area (POA) into phenotypically consistent subregions. Radiomics features were calculated and selected from the tumor active area (TAA), POA and subregions, and used to develop models. Prediction values of each region were investigated and compared with receiver operating characteristic curves and Delong test.

Results

For predicting EGFR mutations, a multi-region combined model (EGFR-Fusion) was developed based on joint of the partitioned metastasis/brain parenchyma (M/BP)-interface and TAA, and generated the highest prediction performance in the training (AUC = 0.945, SEN = 0.878, SPE = 0.937), internal validation (AUC = 0.880, SEN = 0.733, SPE = 0.969), and external validation (AUC = 0.895, SEN = 0.875, SPE = 0.800) cohorts. For predicting response to EGFR-TKI, the developed multi-region combined model (TKI-Fusion) yielded predictive AUCs of 0.869 (SEN = 0.717, SPE = 0.884), 0.786 (SEN = 0.708, SPE = 0.818), and 0.802 (SEN = 0.750, SPE = 0.800) in the training, internal validation and external validation cohort, respectively.

Conclusion

Our study revealed that complementary information regarding the EGFR status and response to EGFR-TKI can be provided by subregional radiomics. The proposed radiomics models may be new markers to guide treatment plans for NSCLC patients with BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Abbreviations

AIC:

Akaike information criterion

AUC:

Area under the curve

BM:

Brain metastasis

EGFR:

Epidermal growth factor receptor

ICC:

Intraclass correlation coefficients

LASSO:

Least absolute shrinkage and selection operator

MRI:

Magnetic resonance imaging

M/BP:

Metastasis/brain parenchyma

NSCLC:

Non-small-cell lung carcinoma

ROI:

Region of interest

T1C:

Contrast-enhanced T1-weighted imaging

T2W:

T2-weighted imaging

TAA:

Tumor active area

POA:

Peritumoral edema area

SC:

Silhouette coefficient

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Niu FY, Zhou Q, Yang JJ, Zhong WZ, Chen ZH, Deng W, He YY, Chen HJ, Zeng Z, Ke EE, Zhao N, Zhang N, Sun HW, Zhang QY, Xie Z, Zhang XC, Wu YL (2016) Distribution and prognosis of uncommon metastases from non-small cell lung cancer. BMC Cancer 16:149. https://doi.org/10.1186/s12885-016-2169-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boire A, Brastianos PK, Garzia L, Valiente M (2020) Brain metastasis. Nat Rev Cancer 20(1):4–11. https://doi.org/10.1038/s41568-019-0220-y

    Article  CAS  PubMed  Google Scholar 

  5. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, Okamoto I, Zhou C, Cho BC, Cheng Y, Cho EK, Voon PJ, Planchard D, Su WC, Gray JE, Lee SM, Hodge R, Marotti M, Rukazenkov Y, Ramalingam SS (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 378(2):113–125. https://doi.org/10.1056/NEJMoa1713137

    Article  CAS  PubMed  Google Scholar 

  6. Dong RF, Zhu ML, Liu MM, Xu YT, Yuan LL, Bian J, Xia YZ, Kong LY (2021) EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol Res 167:105583. https://doi.org/10.1016/j.phrs.2021.105583

    Article  CAS  PubMed  Google Scholar 

  7. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500. https://doi.org/10.1126/science.1099314

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Wu F, Li X, Zhao C, Jia Y, Jia K, Han R, Qiao M, Li W, Yu J, Zhou F, Xiong A, Chen B, Fan J, Ren S, Zhou C (2021) patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/PD-L1 based immunotherapy in EGFR common mutation NSCLC. Front Oncol 11:639947. https://doi.org/10.3389/fonc.2021.639947

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu SG, Shih JY (2018) Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 17(1):38. https://doi.org/10.1186/s12943-018-0777-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rebuzzi SE, Alfieri R, La Monica S, Minari R, Petronini PG, Tiseo M (2020) Combination of EGFR-TKIs and chemotherapy in advanced EGFR mutated NSCLC: review of the literature and future perspectives. Crit Rev Oncol Hematol 146:102820. https://doi.org/10.1016/j.critrevonc.2019.102820

    Article  PubMed  Google Scholar 

  11. Chetan MR, Gleeson FV (2021) Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol 31(2):1049–1058. https://doi.org/10.1007/s00330-020-07141-9

    Article  PubMed  Google Scholar 

  12. Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, Lieberman DB, Morrissette JD, Evans TL, Bauml J, Aggarwal C, Kosteva JA, Alley E, Ciunci C, Cohen RB, Bagley S, Stonehouse-Lee S, Sherry VE, Gilbert E, Langer C, Vachani A, Carpenter EL (2016) Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res 22(23):5772–5782. https://doi.org/10.1158/1078-0432.Ccr-16-1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barnet MB, O’Toole S, Horvath LG, Selinger C, Yu B, Ng CC, Boyer M, Cooper WA, Kao S (2017) EGFR-co-mutated advanced NSCLC and response to EGFR tyrosine kinase inhibitors. J Thorac Oncol 12(3):585–590. https://doi.org/10.1016/j.jtho.2016.09.001

    Article  PubMed  Google Scholar 

  14. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue R, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  15. Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A (2022) Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol 19(2):132–146. https://doi.org/10.1038/s41571-021-00560-7

    Article  CAS  PubMed  Google Scholar 

  16. Chen BT, Jin T, Ye N, Mambetsariev I, Daniel E, Wang T, Wong CW, Rockne RC, Colen R, Holodny AI, Sampath S, Salgia R (2020) Radiomic prediction of mutation status based on MR imaging of lung cancer brain metastases. Magn Reson Imaging 69:49–56. https://doi.org/10.1016/j.mri.2020.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahn SJ, Kwon H, Yang JJ, Park M, Cha YJ, Suh SH, Lee JM (2020) Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer. Sci Rep 10(1):8905. https://doi.org/10.1038/s41598-020-65470-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang G, Wang B, Wang Z, Li W, Xiu J, Liu Z, Han M (2021) Radiomics signature of brain metastasis: prediction of EGFR mutation status. Eur Radiol 31(7):4538–4547. https://doi.org/10.1007/s00330-020-07614-x

    Article  CAS  PubMed  Google Scholar 

  19. Langley RR, Fidler IJ (2013) The biology of brain metastasis. Clin Chem 59(1):180–189. https://doi.org/10.1373/clinchem.2012.193342

    Article  CAS  PubMed  Google Scholar 

  20. Doron H, Pukrop T, Erez N (2019) A blazing landscape: neuroinflammation shapes brain metastasis. Cancer Res 79(3):423–436. https://doi.org/10.1158/0008-5472.Can-18-1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berghoff AS, Rajky O, Winkler F, Bartsch R, Furtner J, Hainfellner JA, Goodman SL, Weller M, Schittenhelm J, Preusser M (2013) Invasion patterns in brain metastases of solid cancers. Neuro Oncol 15(12):1664–1672. https://doi.org/10.1093/neuonc/not112

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zakaria R, Platt-Higgins A, Rathi N, Radon M, Das S, Das K, Bhojak M, Brodbelt A, Chavredakis E, Jenkinson MD, Rudland PS (2018) T-cell densities in brain metastases are associated with patient survival times and diffusion tensor MRI changes. Cancer Res 78(3):610–616. https://doi.org/10.1158/0008-5472.Can-17-1720

    Article  CAS  PubMed  Google Scholar 

  23. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  24. Kanungo M, Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892. https://doi.org/10.1109/TPAMI.2002.1017616

    Article  Google Scholar 

  25. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254. https://doi.org/10.1007/bf02289588

    Article  CAS  PubMed  Google Scholar 

  26. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.Can-17-0339

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bartko JJ (1966) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19(1):3–11. https://doi.org/10.2466/pr0.1966.19.1.3

    Article  CAS  PubMed  Google Scholar 

  28. Sakamoto Y, Ishiguro M, Kitagawa GJD (1986) Akaike information criterion statistics, vol 81. D. Reidel, The Netherlands, p 26853

    Google Scholar 

  29. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845. https://doi.org/10.2307/2531595

    Article  CAS  PubMed  Google Scholar 

  30. Park YW, An C, Lee J, Han K, Choi D, Ahn SS, Kim H, Ahn SJ, Chang JH, Kim SH, Lee SK (2021) Diffusion tensor and postcontrast T1-weighted imaging radiomics to differentiate the epidermal growth factor receptor mutation status of brain metastases from non-small cell lung cancer. Neuroradiology 63(3):343–352. https://doi.org/10.1007/s00234-020-02529-2

    Article  PubMed  Google Scholar 

  31. Yang C, Chen W, Gong G, Li Z, Qiu Q, Yin Y (2020) Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. Transl Cancer Res 9(11):6683–6690. https://doi.org/10.21037/tcr-20-1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdurixiti M, Nijiati M, Shen R, Ya Q, Abuduxiku N, Nijiati M (2021) Current progress and quality of radiomic studies for predicting EGFR mutation in patients with non-small cell lung cancer using PET/CT images: a systematic review. Br J Radiol 94(1122):20201272. https://doi.org/10.1259/bjr.20201272

    Article  PubMed  PubMed Central  Google Scholar 

  33. Song J, Shi J, Dong D, Fang M, Zhong W, Wang K, Wu N, Huang Y, Liu Z, Cheng Y, Gan Y, Zhou Y, Zhou P, Chen B, Liang C, Liu Z, Li W, Tian J (2018) A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy. Clin Cancer Res 24(15):3583–3592. https://doi.org/10.1158/1078-0432.Ccr-17-2507

    Article  CAS  PubMed  Google Scholar 

  34. Song J, Wang L, Ng NN, Zhao M, Shi J, Wu N, Li W, Liu Z, Yeom KW, Tian J (2020) Development and validation of a machine learning model to explore tyrosine kinase inhibitor response in patients with stage IV EGFR variant-positive non-small cell lung cancer. JAMA Netw Open 3(12):e2030442. https://doi.org/10.1001/jamanetworkopen.2020.30442

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, Gao C, Sun Y, Tian J, Zhao X, Sun X, Gillies RJ, Schabath MB (2020) Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun 11(1):5228. https://doi.org/10.1038/s41467-020-19116-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siam L, Bleckmann A, Chaung HN, Mohr A, Klemm F, Barrantes-Freer A, Blazquez R, Wolff HA, Lüke F, Rohde V, Stadelmann C, Pukrop T (2015) The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study. Oncotarget 6(30):29254–29267. https://doi.org/10.18632/oncotarget.4201

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yoo H, Kim YZ, Nam BH, Shin SH, Yang HS, Lee JS, Zo JI, Lee SH (2009) Reduced local recurrence of a single brain metastasis through microscopic total resection. J Neurosurg 110(4):730–736. https://doi.org/10.3171/2008.8.Jns08448

    Article  PubMed  Google Scholar 

  38. Kamp MA, Rapp M, Slotty PJ, Turowski B, Sadat H, Smuga M, Dibué-Adjei M, Steiger HJ, Szelényi A, Sabel M (2015) Incidence of local in-brain progression after supramarginal resection of cerebral metastases. Acta Neurochir 157(6):905–910. https://doi.org/10.1007/s00701-015-2405-9

    Article  PubMed  Google Scholar 

  39. Tu W, Sun G, Fan L, Wang Y, Xia Y, Guan Y, Li Q, Zhang D, Liu S, Li Z (2019) Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Lung Cancer 132:28–35. https://doi.org/10.1016/j.lungcan.2019.03.025

    Article  PubMed  Google Scholar 

  40. Mei D, Luo Y, Wang Y, Gong J (2018) CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses. Cancer Imaging 18(1):52. https://doi.org/10.1186/s40644-018-0184-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Digumarthy SR, Padole AM, Gullo RL, Sequist LV, Kalra MK (2019) Can CT radiomic analysis in NSCLC predict histology and EGFR mutation status? Medicine 98(1):e13963. https://doi.org/10.1097/md.0000000000013963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Kim J, Balagurunathan Y, Li Q, Garcia AL, Stringfield O, Ye Z, Gillies RJ (2016) Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clin Lung Cancer 17(5):441–448. https://doi.org/10.1016/j.cllc.2016.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gevaert O, Echegaray S, Khuong A, Hoang CD, Shrager JB, Jensen KC, Berry GJ, Guo HH, Lau C, Plevritis SK, Rubin DL, Napel S, Leung AN (2017) Predictive radiogenomics modeling of EGFR mutation status in lung cancer. Sci Rep 7:41674. https://doi.org/10.1038/srep41674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang L, Chen B, Liu X, Song J, Fang M, Hu C, Dong D, Li W, Tian J (2018) Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. Transl Oncol 11(1):94–101. https://doi.org/10.1016/j.tranon.2017.10.012

    Article  PubMed  Google Scholar 

  45. Pinheiro G, Pereira T, Dias C, Freitas C, Hespanhol V, Costa JL, Cunha A, Oliveira HP (2020) Identifying relationships between imaging phenotypes and lung cancer-related mutation status: EGFR and KRAS. Sci Rep 10(1):3625. https://doi.org/10.1038/s41598-020-60202-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol 27(10):4188–4197. https://doi.org/10.1007/s00330-016-4637-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research was funded by Natural Science Foundation of Liaoning Province (2021-MS-205), Climbing Fund of National Cancer Center (NCC201806B011), and Medical-Engineering Joint Fund for Cancer Hospital of China Medical University and Dalian University of technology (LD202029).

Author information

Authors and Affiliations

Authors

Contributions

YF and XJ contributed to the conception and design of the study. ZZ, XW and YL contributed to the acquisition of clinical data. YF, ZZ and XJ contributed to data analysis and interpretation. HA, XW and CY contributed to statistical analyses. XJ and YF participated in manuscript preparation, edition and revision. All authors participated in the review of manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yahong Luo or Xiran Jiang.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Ethical approval

This retrospective study was approved by the Institutional Review Board of the Cancer Hospital of China Medical University, and the consents from patients were waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 464 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Zhao, Z., Wang, X. et al. Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface. Radiol med 127, 1342–1354 (2022). https://doi.org/10.1007/s11547-022-01569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-022-01569-3

Keywords

Navigation