Skip to main content
Log in

Dose-escalated pelvic radiotherapy for prostate cancer in definitive or postoperative setting

  • Radiotherapy
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

Given the absence of standardized planning approach for clinically node-positive (cN1) prostate cancer (PCa), we collected data about the use of prophylactic pelvic irradiation and nodal boost. The aim of the present series is to retrospectively assess clinical outcomes after this approach to compare different multimodal treatment strategies in this scenario.

Methods

Data from clinical records of patients affected by cN1 PCa and treated in six different Italian institutes with prophylactic pelvic irradiation and boost on pathologic pelvic lymph nodes detected with CT, MRI or choline PET/CT were retrospectively reviewed and collected. Clinical outcomes in terms of overall survival (OS) and biochemical relapse-free survival (b-RFS) were explored. The correlation between outcomes and baseline features (International Society of Urological Pathology-ISUP pattern, total dose to positive pelvic nodes ≤ / > 60 Gy, sequential or simultaneous integrated boost (SIB) administration and definitive vs postoperative treatment) was explored.

Results

ISUP pattern < 2 was a significant predictor of improved b-RFS (HR = 0.3, 95% CI 0.1220–0.7647, P = 0.0113), while total dose < 60 Gy to positive pelvic nodes was associated with worse b-RFS (HR = 3.59, 95% CI 1.3245–9.741, P = 0.01). Conversely, treatment setting (postoperative vs definitive) and treatment delivery technique (SIB vs sequential boost) were not associated with significant differences in terms of b-RFS (HR = 0.85, 95% CI 0.338–2.169, P = 0.743, and HR = 2.39, 95% CI 0.93–6.111, P = 0.067, respectively).

Conclusion

Results from the current analysis are in keeping with data from literature showing that pelvic irradiation and boost on positive nodes are effective approaches. Upfront surgical approach was not associated with better clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moris L, Cumberbatch MG, Van den Broeck T, Gandaglia G, Fossati N, Kelly B et al (2020) Benefits and risks of primary treatments for high-risk localized and locally advanced prostate cancer: an international multidisciplinary systematic review [formula presented]. Eur Urol 77:614–627. https://doi.org/10.1016/j.eururo.2020.01.033

    Article  CAS  PubMed  Google Scholar 

  2. Ventimiglia E, Seisen T, Abdollah F, Briganti A, Fonteyne V, James N et al (2019) A systematic review of the role of definitive local treatment in patients with clinically lymph node-positive prostate cancer. Eur Urol Oncol 2:294–301. https://doi.org/10.1016/j.euo.2019.02.001

    Article  PubMed  Google Scholar 

  3. Rusthoven CG, Carlson JA, Waxweiler TV, Raben D, Dewitt PE, Crawford ED et al (2014) The impact of definitive local therapy for lymph node-positive prostate cancer: a population-based study. Int J Radiat Oncol Biol Phys 88:1064–1073. https://doi.org/10.1016/j.ijrobp.2014.01.008

    Article  PubMed  Google Scholar 

  4. Tward JD, Kokeny KE, Shrieve DC (2013) Radiation therapy for clinically node-positive prostate adenocarcinoma is correlated with improved overall and prostate cancer-specific survival. Pract Radiat Oncol 3:234–240. https://doi.org/10.1016/j.prro.2012.11.011

    Article  PubMed  Google Scholar 

  5. James ND, Spears MR, Clarke NW, Dearnaley DP, Mason MD, Parker CC et al (2016) Failure-free survival and radiotherapy in patients with newly diagnosed nonmetastatic prostate cancer. JAMA Oncol 2:348–357. https://doi.org/10.1001/jamaoncol.2015.4350

    Article  PubMed  PubMed Central  Google Scholar 

  6. Seisen T, Vetterlein MW, Karabon P, Jindal T, Sood A, Nocera L et al (2018) Efficacy of local treatment in prostate cancer patients with clinically pelvic lymph node-positive disease at initial diagnosis. Eur Urol 73:452–461. https://doi.org/10.1016/j.eururo.2017.08.011

    Article  PubMed  Google Scholar 

  7. Lin CC, Gray PJ, Jemal A, Efstathiou JA (2015) Androgen deprivation with or without radiation therapy for clinically node-positive prostate cancer. J Natl Cancer Inst 107:1–10. https://doi.org/10.1093/jnci/djv119

    Article  CAS  Google Scholar 

  8. Fosså SD, Wiklund F, Klepp O, Angelsen A, Solberg A, Damber JE et al (2016) Ten- and 15-yr prostate cancer-specific mortality in patients with nonmetastatic locally advanced or aggressive intermediate prostate cancer, randomized to lifelong endocrine treatment alone or combined with radiotherapy: final results of The Scandinavian. Eur Urol 70:684–691. https://doi.org/10.1016/j.eururo.2016.03.021

    Article  PubMed  Google Scholar 

  9. Warde P, Mason M, Ding K, Kirkbride P, Brundage M, Cowan R et al (2011) Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 378:2104–2111. https://doi.org/10.1016/S0140-6736(11)61095-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mason MD, Parulekar WR, Sydes MR, Brundage M, Kirkbride P, Gospodarowicz M et al (2015) Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation therapy alone in locally advanced prostate cancer. J Clin Oncol 33:2143–2150. https://doi.org/10.1200/JCO.2014.57.7510

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moschini M, Briganti A, Murphy CR, Bianchi M, Gandaglia G, Montorsi F et al (2016) Outcomes for patients with clinical lymphadenopathy treated with radical prostatectomy. Eur Urol 69:193–196. https://doi.org/10.1016/j.eururo.2015.07.047

    Article  PubMed  Google Scholar 

  12. Donohue JF, Bianco FJ, Kuroiwa K, Vickers AJ, Wheeler TM, Scardino PT et al (2006) Poorly differentiated prostate cancer treated with radical prostatectomy: long-term outcome and incidence of pathological downgrading. J Urol 176:991–995. https://doi.org/10.1016/j.juro.2006.04.048

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yossepowitch O, Eggener SE, Bianco FJ, Carver BS, Serio A, Scardino PT et al (2007) Radical prostatectomy for clinically localized, high risk prostate cancer: critical analysis of risk assessment methods. J Urol 178:493–499. https://doi.org/10.1016/j.juro.2007.03.105

    Article  PubMed  Google Scholar 

  14. Bastian PJ, Gonzalgo ML, Aronson WJ, Terris MK, Kane CJ, Amling CL et al (2006) Clinical and pathologic outcome after radical prostatectomy for prostate cancer patients with a preoperative gleason sum of 8 to 10. Cancer 107:1265–1272. https://doi.org/10.1002/cncr.22116

    Article  PubMed  Google Scholar 

  15. Fossati N, Willemse PPM, Van den Broeck T, van den Bergh RCN, Yuan CY, Briers E et al (2017) The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: a systematic review. Eur Urol 72:84–109. https://doi.org/10.1016/j.eururo.2016.12.003

    Article  PubMed  Google Scholar 

  16. Bianchi L, Nini A, Bianchi M, Gandaglia G, Fossati N, Suardi N et al (2016) The role of prostate-specific antigen persistence after radical prostatectomy for the prediction of clinical progression and cancer-specific mortality in node-positive prostate cancer patients. Eur Urol 69:1142–1148. https://doi.org/10.1016/j.eururo.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  17. Touijer KA, Karnes RJ, Passoni N, Sjoberg DD, Assel M, Fossati N et al (2018) Survival outcomes of men with lymph node-positive prostate cancer after radical prostatectomy: a comparative analysis of different postoperative management strategies. Eur Urol 73:890–896. https://doi.org/10.1016/j.eururo.2017.09.027

    Article  PubMed  Google Scholar 

  18. Lawton CA, DeSilvio M, Roach M, Uhl V, Kirsch R, Seider M et al (2007) An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94–13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys 69:646–655. https://doi.org/10.1016/j.ijrobp.2007.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pommier P, Chabaud S, Lagrange JL, Richaud P, Lesaunier F, Le Prise E et al (2007) Is there a role for pelvic irradiation in localized prostate adenocarcinoma? Preliminary results of GETUG-01. J Clin Oncol 25:5366–5373. https://doi.org/10.1200/JCO.2006.10.5171

    Article  PubMed  Google Scholar 

  20. Asbell SO, Krall JM, Pilepich MV, Baerwald H, Sause WT, Hanks GE et al (1988) Elective pelvic irradiation in stage A2, B carcinoma of the prostate: analysis of RTOG 77–06. Int J Radiat Oncol Biol Phys 15:1307–1316. https://doi.org/10.1016/0360-3016(88)90225-8

    Article  CAS  PubMed  Google Scholar 

  21. Aizer AA, Yu JB, McKeon AM, Decker RH, Colberg JW, Peschel RE (2009) Whole pelvic radiotherapy versus prostate only radiotherapy in the management of locally advanced or aggressive prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 75:1344–1349. https://doi.org/10.1016/j.ijrobp.2008.12.082

    Article  PubMed  Google Scholar 

  22. Pan CC, Kim KY, Taylor JMG, McLaughlin PW, Sandler HM (2002) Influence of 3D-CRT pelvic irradiation on outcome in prostate cancer treated with external beam radiotherapy. Int J Radiat Oncol Biol Phys 53:1139–1145. https://doi.org/10.1016/S0360-3016(02)02818-3

    Article  CAS  PubMed  Google Scholar 

  23. Spratt DE, Vargas HA, Zumsteg ZS, Golia Pernicka JS, Osborne JR, Pei X et al (2017) Patterns of lymph node failure after dose-escalated radiotherapy: implications for extended pelvic lymph node coverage. Eur Urol 71:37–43. https://doi.org/10.1016/j.eururo.2016.07.043

    Article  PubMed  Google Scholar 

  24. Abramowitz MC, Li T, Buyyounouski MK, Ross E, Uzzo RG, Pollack A et al (2008) The phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer. Cancer 112:55–60. https://doi.org/10.1002/cncr.23139

    Article  PubMed  Google Scholar 

  25. Francolini G, Jereczek-Fossa BA, Di Cataldo V, Simontacchi G, Marvaso G, Zerella MA et al (2020) Stereotactic radiotherapy for prostate bed recurrence after prostatectomy, a multicentric series. BJU Int 125:417–425. https://doi.org/10.1111/bju.14924

    Article  CAS  PubMed  Google Scholar 

  26. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA (2016) The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 40:244–252. https://doi.org/10.1097/PAS.0000000000000530

    Article  PubMed  Google Scholar 

  27. NCI, NIH D (2009) Common terminology criteria for adverse events v4.0. NIH Publ 0–71

  28. Meijer HJM, Debats OA, Roach M, Span PN, Witjes JA, Kaanders JHAM et al (2012) Magnetic resonance lymphography findings in patients with biochemical recurrence after prostatectomy and the relation with the stephenson nomogram. Int J Radiat Oncol Biol Phys 84:1186–1191. https://doi.org/10.1016/j.ijrobp.2012.02.039

    Article  PubMed  Google Scholar 

  29. Engels B, Soete G, Koen T, Bral S, De Coninck P, Verellen D et al (2009) Helical tomotherapy with simultaneous integrated boost for high-risk and lymph node-positive prostate cancer: early report on acute and late toxicity. Technol Cancer Res Treat 8:353–359. https://doi.org/10.1177/153303460900800505

    Article  PubMed  Google Scholar 

  30. Fonteyne V, De Gersem W, De Neve W, Jacobs F, Lumen N, Vandecasteele K et al (2009) Hypofractionated intensity-modulated arc therapy for lymph node metastasized prostate cancer. Int J Radiat Oncol Biol Phys 75:1013–1020. https://doi.org/10.1016/j.ijrobp.2008.12.047

    Article  PubMed  Google Scholar 

  31. Guerrero Urbano T, Khoo V, Staffurth J, Norman A, Buffa F, Jackson A et al (2010) Intensity-modulated radiotherapy allows escalation of the radiation dose to the pelvic lymph nodes in patients with locally advanced prostate cancer: Preliminary results of a phase i dose escalation study. Clin Oncol 22:236–244. https://doi.org/10.1016/j.clon.2010.01.005

    Article  CAS  Google Scholar 

  32. Müller AC, Lütjens J, Alber M, Eckert F, Bamberg M, Schilling D et al (2012) Nebenwirkungen und Ergebnisse einer Becken-IMRT nodal-positiver Prostatakarzinome. Strahlentherapie Und Onkol 188:982–989. https://doi.org/10.1007/s00066-012-0169-1

    Article  Google Scholar 

  33. Bruni A, Ingrosso G, Trippa F, Di Staso M, Lanfranchi B, Rubino L et al (2019) Macroscopic locoregional relapse from prostate cancer: which role for salvage radiotherapy? Clin Transl Oncol 21:1532–1537. https://doi.org/10.1007/s12094-019-02084-0

    Article  CAS  PubMed  Google Scholar 

  34. De Bleser E, Jereczek-Fossa BA, Pasquier D, Zilli T, Van As N, Siva S et al (2019) Metastasis-directed therapy in treating nodal oligorecurrent prostate cancer: a multi-institutional analysis comparing the outcome and toxicity of stereotactic body radiotherapy and elective nodal radiotherapy. Eur Urol 76:732–739. https://doi.org/10.1016/j.eururo.2019.07.009

    Article  PubMed  Google Scholar 

  35. Ost P, Reynders D, Decaestecker K, Fonteyne V, Lumen N, DeBruycker A et al (2018) Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J Clin Oncol 36:446–453. https://doi.org/10.1200/JCO.2017.75.4853

    Article  CAS  PubMed  Google Scholar 

  36. Mazzola R, Cuccia F, Figlia V, Giaj-Levra N, Nicosia L, Ricchetti F et al (2019) New metabolic tracers for detectable PSA levels in the postprostatectomy setting: Is the era of melting glaciers upcoming? Transl Androl Urol 8:S538–S541. https://doi.org/10.21037/tau.2019.12.34

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jang TL, Patel N, Faiena I, Radadia KD, Moore DF, Elsamra SE et al (2018) Comparative effectiveness of radical prostatectomy with adjuvant radiotherapy versus radiotherapy plus androgen deprivation therapy for men with advanced prostate cancer. Cancer 124:4010–4022. https://doi.org/10.1002/cncr.31726

    Article  CAS  PubMed  Google Scholar 

  38. Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395:1208–1216. https://doi.org/10.1016/S0140-6736(20)30314-7

    Article  CAS  PubMed  Google Scholar 

  39. Ferraro DA, Garcia Schüler HI, Muehlematter UJ, Eberli D, Müller J, Müller A et al (2020) Impact of 68Ga-PSMA-11 PET staging on clinical decision-making in patients with intermediate or high-risk prostate cancer. Eur J Nucl Med Mol Imaging 47:652–664. https://doi.org/10.1007/s00259-019-04568-1

    Article  CAS  PubMed  Google Scholar 

  40. Shakespeare TP, Eggert E, Wood M, Westhuyzen J, Turnbull K, Rutherford N et al (2019) PSMA-PET guided dose-escalated volumetric arc therapy (VMAT) for newly diagnosed lymph node positive prostate cancer: Efficacy and toxicity outcomes at two years. Radiother Oncol 141:188–191. https://doi.org/10.1016/j.radonc.2019.09.027

    Article  CAS  PubMed  Google Scholar 

  41. Parker CC, James ND, Brawley CD, Clarke NW, Hoyle AP, Ali A et al (2018) Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet 392:2353–2366. https://doi.org/10.1016/S0140-6736(18)32486-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ghashghaei M, Kucharczyk M, Elakshar S, Muanza T, Niazi T (2019) Combining prostate cancer radiotherapy with therapies targeting the androgen receptor axis. Curr Oncol 26:e640–e650. https://doi.org/10.3747/co.26.5005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Francolini.

Ethics declarations

Conflict of interest

No conflict of interest has to be declared.

Ethical approval

Ethical approval was waived by the local Ethics Committees in view of the retrospective nature of the study and all the procedures being performed were part of routine care. The study was performed according to the Declaration of Helsinki, and written informed consent was obtained for all patients.

Informed consent

All patients gave consent for the use of their anonymized data for research and educational purposes. All procedures were performed in accordance with ethical standards of institutional ethical committee.

Consent to participate/Consent for publication

All patients gave written informed consent for participation in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francolini, G., Stocchi, G., Detti, B. et al. Dose-escalated pelvic radiotherapy for prostate cancer in definitive or postoperative setting. Radiol med 127, 206–213 (2022). https://doi.org/10.1007/s11547-021-01435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-021-01435-8

Keywords

Navigation