Skip to main content

Advertisement

Log in

Predictive role of ankle MRI for tendon graft choice and surgical reconstruction

  • MUSCULOSKELETAL RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

Tendon transfers have become a common surgical procedure around the ankle. In this study, we sought to evaluate the existence of a correlation between specific anthropometric parameters and the size of some ankle tendons measured on MRI, in particular those mostly used as graft in ankle surgery.

Methods

We recorded gender, height, weight, and body mass index (BMI) of 113 patients (57 females; mean age: 42 ± 18) who underwent ankle MRI. MRI measurements performed by a radiologist were: axial shortest diameter of Achilles (AT), posterior tibialis (PTT), flexor digitorum longus (FDLT), flexor hallucis longus (FHLT), peroneus longus (PLT), and anterior tibialis (ATT) tendons, intermalleolar distance (ID) and talus width (TW). Mann–Whitney U test and Pearson’s correlation coefficient were used. After applying the Bonferroni correction for multiple comparisons, statistical significance was set at p < 0.002.

Results

The mean patient height, weight and BMI were 169 ± 9.8 cm (range: 140–193), 72.4 ± 16.4 kg (range: 44–142), and 25 ± 5.7 (range: 16–50), respectively. The mean ankle measurements were: AT = 5.3 ± 1.4 mm, PTT = 3.3 ± 0.6 mm, FDLT = 2.6 ± 0.4 mm, FHLT = 2.7 ± 0.4 mm, PLT = 2.9 ± 0.5 mm, ATT = 3±0.6 mm, ID = 62.9 ± 4.5 mm, and TW = 28.8 ± 2.5 mm. A statistical difference between male and female patients was observed regarding ID (z = −6.955, p < .001), TW (z = −6.692, p < .001), AT (z = −3.587, p < .001), PTT (z = −3.783, p < .001), and FDLT (z = −3.744, p < .001). Both PTT and FDLT showed a significant correlation with ID (p < .001) and TW (p < .001). ATT size was significantly correlated with weight, ID and TW (all with p < 0.001). PLT and AT showed a significant correlation only with ID and weight (p ≤ .001), respectively.

Conclusion

Our data might help orthopaedists in preoperative planning to identify the best graft for ankle surgical procedures including tendon transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pendleton C, Quinones-hinojosa A, Redett RJ et al (2011) Harvey cushing: early use of tendon transfers for repair of foot deformity a historical case report. Acta Orthop 82(4):504–506. https://doi.org/10.3109/17453674.2011.596065

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thès A et al (2018) Arthroscopic classification of chronic anterior talo-fibular ligament lesions in chronic ankle instability. Orthop Traumatol Surg Res 104(8S):S207–S211. https://doi.org/10.1016/j.otsr.2018.09.004

    Article  PubMed  Google Scholar 

  3. Lopes R et al (2018) Arthroscopic treatment of chronic ankle instability: prospective study of outcomes in 286 patients. Orthop Traumatol Surg Res 104(8S):S199–S205. https://doi.org/10.1016/j.otsr.2018.09.005

    Article  PubMed  Google Scholar 

  4. Albano D, Martinelli N, Bianchi A et al (2018) Posterior tibial tendon dysfunction: clinical and magnetic resonance imaging findings having histology as reference standard. Eur J Radiol 99:55–61. https://doi.org/10.1016/j.ejrad.2017.12.005

    Article  PubMed  Google Scholar 

  5. Kuo KN, Wu K, Krzak J et al (2015) Tendon transfers around the foot: when and where. Foot Ankle Clin 20(4):601–617. https://doi.org/10.1016/j.fcl.2015.07.005

    Article  PubMed  Google Scholar 

  6. Tickner A, Thorng S, Martin M et al (2019) Management of isolated anterior tibial tendon rupture: a systematic review and meta-analysis. J Foot Ankle Surg 58(2):213–220. https://doi.org/10.1053/j.jfas.2018.08.001

    Article  PubMed  Google Scholar 

  7. Irgit KS, Cush G (2012) Tendon transfers for peroneal nerve injuries in the multiple ligament injured knee. J Knee Surg 25(4):327–333. https://doi.org/10.1055/s-0032-1322604

    Article  PubMed  Google Scholar 

  8. Vigasio A, Marcoccio I, Patelli A et al (2008) New tendon transfer for correction of drop-foot in common peroneal nerve palsy. Clin Orthop Relat Res 466(6):1454–1466. https://doi.org/10.1007/s11999-008-0249-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang L, Miao XD, Yang DS et al (2011) Bilateral Achilles tendon enlargement. Orthopedics 34(12):e960–e964. https://doi.org/10.3928/01477447-20111021-28

    Article  PubMed  Google Scholar 

  10. Miyazaki T, Uchida K, Kokubo Y et al (2016) Extensive loss of tibialis anterior tendon: surgical repair with split tendon transfer of tibialis posterior tendon: a case report. J Foot Ankle Surg 55(3):633–637. https://doi.org/10.1053/j.jfas.2015.04.021

    Article  PubMed  Google Scholar 

  11. Sun Y, Wang H, Tang Y et al (2019) Reconstruction of the lateral ankle ligaments using the anterior half of peroneus longus tendon graft. Foot Ankle Surg 25(2):242–246. https://doi.org/10.1016/j.fas.2017.11.001

    Article  PubMed  Google Scholar 

  12. Lui TH (2016) Stabilization of medial longitudinal foot arch by peroneus longus transfer. Foot (Edinb) 27:22–26. https://doi.org/10.1016/j.foot.2016.03.001

    Article  CAS  Google Scholar 

  13. Ellis SJ, Williams BR, Wagshul AD et al (2010) Deltoid ligament reconstruction with peroneus longus autograft in flatfoot deformity. Foot Ankle Int 31(9):781–789. https://doi.org/10.3113/FAI.2010.0781

    Article  PubMed  Google Scholar 

  14. Kolodziej P, Glisson RR, Nunley JA (1999) Risk of avulsion of the Achilles tendon after partial excision for treatment of insertional tendonitis and Haglund’s deformity: a biomechanical study. Foot Ankle Int 20(7):433–437. https://doi.org/10.1177/107110079902000707

    Article  CAS  PubMed  Google Scholar 

  15. Cohen JC, de Freitas Cabral E (2012) Peroneus longus transfer for drop foot in Hansen disease. Foot Ankle Clin 17(3):425–436. https://doi.org/10.1016/j.fcl.2012.06.005

    Article  PubMed  Google Scholar 

  16. Resnick D, Kransdorf MJ (2005) Bone and joint imaging. Elsevier Inc., Amsterdam

    Google Scholar 

  17. Sconfienza LM, Albano D, Allen G et al (2018) Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol 28(12):5338–5351. https://doi.org/10.1007/s00330-018-5474-3

    Article  PubMed  Google Scholar 

  18. Bellelli A, Silvestri E, Barile A et al (2019) Position paper on magnetic resonance imaging protocols in the musculoskeletal system (excluding the spine) by the Italian College of Musculoskeletal Radiology. Radiol Med. 124(6):522–538. https://doi.org/10.1007/s11547-019-00992-3

    Article  PubMed  Google Scholar 

  19. Magnussen RA, Lawrence JT, West RL et al (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531. https://doi.org/10.1016/j.arthro.2011.11.024

    Article  PubMed  Google Scholar 

  20. Camarda L, Grassedonio E, Albano D et al (2018) MRI evaluation to predict tendon size for knee ligament reconstruction. Muscles Ligaments Tendons J 7(3):478–484. https://doi.org/10.11138/mltj/2017.7.3.478

    Article  PubMed  PubMed Central  Google Scholar 

  21. LiMarzi GM, Scherer KF, Richardson ML et al (2016) CT and MR imaging of the postoperative ankle and foot. Radiographics 36(6):1828–1848

    Article  Google Scholar 

  22. Mardani-Kivi M, Karimi-Mobarakeh M, Mirbolook A et al (2016) Predicting the hamstring tendon diameter using anthropometric parameters. Arch Bone Jt Surg 4(4):314–317

    PubMed  PubMed Central  Google Scholar 

  23. Liu CT, Lu YC, Huang CH (2015) Half-peroneus-longus-tendon graft augmentation for unqualified hamstring tendon graft of anterior cruciate ligament reconstruction. J Orthop Sci 20(5):854–860. https://doi.org/10.1007/s00776-015-0744-2

    Article  PubMed  Google Scholar 

  24. Xie G, Huangfu X, Zhao J (2012) Prediction of the graft size of 4-stranded semitendinosus tendon and 4-stranded gracilis tendon for anterior cruciate ligament reconstruction: a Chinese Han patient study. Am J Sports Med 40(5):1161–1166. https://doi.org/10.1177/0363546511435627

    Article  PubMed  Google Scholar 

  25. Song X, Li Q, Wu Z et al (2018) Predicting the graft diameter of the peroneus longus tendon for anterior cruciate ligament reconstruction. Med (Baltimore) 97(44):e12672. https://doi.org/10.1097/MD.0000000000012672

    Article  Google Scholar 

  26. Papastergiou SG, Konstantinidis GA, Natsis K et al (2012) Adequacy of semitendinosus tendon alone for anterior cruciate ligament reconstruction graft and prediction of hamstring graft size by evaluating simple anthropometric parameters. Anat Res Int 2012:424158. https://doi.org/10.1155/2012/424158

    Article  PubMed  Google Scholar 

  27. Tuman JM, Diduch DR, Rubino LJ et al (2007) Predictors for hamstring graft diameter in anterior cruciate ligament reconstruction. Am J Sports Med 35(11):1945–1949

    Article  Google Scholar 

  28. Cabral P, Paulino C, Takahashi R et al (2013) Correlation of morphologic and pathologic features of the various tendon groups around the ankle: MR imaging investigation. Skeletal Radiol 42(10):1393–1402. https://doi.org/10.1007/s00256-013-1650-3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ma CB, Keifa E, Dunn W et al (2010) Can preoperative measures predict quadruple hamstring graft diameter? Knee 17:81–83. https://doi.org/10.1016/j.knee.2009.06.005

    Article  PubMed  Google Scholar 

  30. Kim SG, Kurosawa H, Sakuraba K et al (2005) Analysis of the risk factors regarding anterior cruciate ligament reconstruction using multiple-looped semitendinosus tendon. Knee 12:366–369

    Article  Google Scholar 

  31. Noojin FK, Barrett GR, Hartzog CW et al (2000) Clinical comparison of intraarticular anterior cruciate ligament reconstruction using autogenous semitendinosus and gracilis tendons in men versus women. Am J Sports Med 28:783–789

    Article  CAS  Google Scholar 

  32. Hamner DL, Brown CH Jr, Steiner ME et al (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557

    Article  CAS  Google Scholar 

  33. Fischetti A, Zawaideh JP, Orlandi D, Belfiore S, Silvestri E (2018) Traumatic peroneal split lesion with retinaculum avulsion: diagnosis and post-operative multymodality imaging. World J Radiol 10(5):46–51. https://doi.org/10.4329/wjr.v10.i5.46

    Article  PubMed  PubMed Central  Google Scholar 

  34. Geib TM, Shelton WR, Phelps RA et al (2009) Anterior cruciate ligament reconstruction using quadriceps tendon autograft: intermediate-term outcome. Arthroscopy 25:1408–1414. https://doi.org/10.1016/j.arthro.2009.06.004

    Article  PubMed  Google Scholar 

  35. Albano D, Messina C, Usuelli FG et al (2017) Magnetic resonance and ultrasound in Achilles tendinopathy: predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection. Eur J Radiol 95:130–135. https://doi.org/10.1016/j.ejrad.2017.08.006

    Article  PubMed  Google Scholar 

  36. Mc Auliffe S, Mc Creesh K, Purtill H et al (2017) A systematic review of the reliability of diagnostic ultrasound imaging in measuring tendon size: is the error clinically acceptable? Phys Ther Sport 26:52–63. https://doi.org/10.1016/j.ptsp.2016.12.002

    Article  PubMed  Google Scholar 

  37. Saupe N, Mengiardi B, Pfirrmann C, Vienne P, Seifert B, Zanetti M (2007) Anatomic variants associated with peroneal tendon disorders: MR imaging findings in volunteers with asymptomatic ankles. Radiology 242:509–517. https://doi.org/10.1148/radiol.2422051993

    Article  PubMed  Google Scholar 

  38. Numkarunarunrote N, Malik A, Aguiar RO, Trudell DJ, Resnick D (2007) Retinacula of the foot and ankle: MRI with anatomic correlation in cadavers. AJR 188:W348–W354. https://doi.org/10.2214/AJR.05.1066

    Article  PubMed  Google Scholar 

Download references

Funding

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Albano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by our Institutional Review Board with a waiver for patients’ informed consent. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

This study was approved by our Institutional Review Board with a waiver for patients’ informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, D., Cortese, M.C., Duarte, A. et al. Predictive role of ankle MRI for tendon graft choice and surgical reconstruction. Radiol med 125, 763–769 (2020). https://doi.org/10.1007/s11547-020-01177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01177-z

Keywords

Navigation