Skip to main content

Advertisement

Log in

Diagnostic performance of contrast-enhanced dual-energy spectral mammography (CESM): a retrospective study involving 644 breast lesions

  • BREAST RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Objective

To evaluate the diagnostic performance of contrast-enhanced dual-energy spectral mammography (CESM) in comparison with that of full-field digital mammography (FFDM), either alone or accompanied with breast ultrasound (BUS) in a large series of patients/breast lesions (n = 644).

Patients and methods

In this retrospective study, five radiologists evaluated the lesions by three imaging modalities: FFDM, FFDM + BUS, and CESM and compared the imaging to the gold standard (histopathology or clinical follow-up). Diagnostic performance parameters and receiver operating characteristic (ROC) curves of CESM were calculated and compared to those of FFDM or FFDM + BUS (McNemar’s test). Additionally, the reliability of tumor size measurement by CESM was compared with the histopathological measurement.

Results

The study included 218 benign and 426 malignant lesions. 85% of benign and 93% of malignant lesions were adequately identified using CESM. With respect to FFDM and FFDM + BUS, CESM significantly increased sensitivity to 93.2% (+ 10.7% and + 3.4%, respectively); specificity to 84.4% (+ 15.8% and + 1.7%, respectively); PPV to 92.3% (+ 26.8% and + 3.6%, respectively); NPV to 86.0% (+ 1.6% and + 1.8%, respectively); and accuracy to 90.2% (+ 15.8% and + 3.2%, respectively). In the ROC curves analyses, the comparison among the three AUC values was also statistically significant (p < 0.001). Good agreement between tumor diameters measured using CESM and histopathology was observed (Spearman’s rank correlation, r = 0.891, p < 0.0001), although this technique tended to produce an overestimation of the size (+ 7 mm).

Conclusions

CESM has high diagnostic accuracy and can be considered as a useful technique for the assessment of breast lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. WHO (2014) WHO position paper on mammography screening. World Health Organization, Geneva, pp 1–84

    Google Scholar 

  3. Lalji UC, Houben IP, Prevos R, Gommers S, van Goethem M, Vanwetswinkel S, Pijnappel R, Steeman R, Frotscher C, Mok W, Nelemans P, Smidt ML, Beets-Tan RG, Wildberger JE, Lobbes MB (2016) Contrast-enhanced spectral mammography in recalls from the Dutch breast cancer screening program: validation of results in a large multireader, multicase study. Eur Radiol 26(12):4371–4379. https://doi.org/10.1007/s00330-016-4336-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel BK, Lobbes MBI, Lewin J (2018) Contrast enhanced spectral mammography: a review. Semin Ultrasound CT MR 39(1):70–79. https://doi.org/10.1053/j.sult.2017.08.005

    Article  PubMed  Google Scholar 

  5. Fallenberg EM, Dromain C, Diekmann F, Engelken F, Krohn M, Singh JM, Ingold-Heppner B, Winzer KJ, Bick U, Renz DM (2014) Contrast-enhanced spectral mammography versus MRI: initial results in the detection of breast cancer and assessment of tumour size. Eur Radiol 24:256–264. https://doi.org/10.1007/s00330-013-3007-7

    Article  CAS  PubMed  Google Scholar 

  6. Dromain C, Thibault F, Diekmann F, Fallenberg EM, Jong RA, Koomen M, Hendrick RE, Tardivon A, Toledano A (2012) Dual-energy contrast-enhanced digital mammography: initial clinical results of a multireader, multicase study. Breast Cancer Res 14(3):R94. https://doi.org/10.1186/bcr3210

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lobbes MB, Lalji U, Houwers J, Nijssen EC, Nelemans PJ, van Roozendaal L, Smidt ML, Heuts E, Wildberger JE (2014) Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme. Eur Radiol 24(7):1668–1676. https://doi.org/10.1007/s00330-014-3154-5

    Article  PubMed  Google Scholar 

  8. Travieso Aja MM, Rodriguez Rodriguez M, Alayon Hernandez S, Vega Benitez V, Luzardo OP (2014) Dual-energy contrast-enhanced mammography. Radiologia 56(5):390–399. https://doi.org/10.1016/j.rx.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  9. Travieso-Aja MDM, Naranjo-Santana P, Fernandez-Ruiz C, Severino-Rondon W, Maldonado-Saluzzi D, Rodriguez Rodriguez M, Vega-Benitez V, Luzardo OP (2018) Factors affecting the precision of lesion sizing with contrast-enhanced spectral mammography. Clin Radiol 73(3):296–303. https://doi.org/10.1016/j.crad.2017.10.017

    Article  PubMed  Google Scholar 

  10. Ali-Mucheru M, Pockaj B, Patel B, Pizzitola V, Wasif N, Stucky CC, Gray R (2016) Contrast-enhanced digital mammography in the surgical management of breast cancer. Ann Surg Oncol 23(Suppl 5):649–655. https://doi.org/10.1245/s10434-016-5567-7

    Article  PubMed  Google Scholar 

  11. Lobbes MB, Lalji UC, Nelemans PJ, Houben I, Smidt ML, Heuts E, de Vries B, Wildberger JE, Beets-Tan RG (2015) The quality of tumor size assessment by contrast-enhanced spectral mammography and the benefit of additional breast MRI. J Cancer 6(2):144–150. https://doi.org/10.7150/jca.10705

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thibault F, Balleyguier C, Tardivon A, Dromain C (2012) Contrast enhanced spectral mammography: better than MRI? Eur J Radiol 81(Suppl 1):S162–S164. https://doi.org/10.1016/S0720-048X(12)70068-2

    Article  PubMed  Google Scholar 

  13. Lewin J, Jochelson MS (2018) White paper on contrast enhanced digital mammography. White Papers of the Society of Breast Imaging

  14. Houben IPL, Van de Voorde P, Jeukens C, Wildberger JE, Kooreman LF, Smidt ML, Lobbes MBI (2017) Contrast-enhanced spectral mammography as work-up tool in patients recalled from breast cancer screening has low risks and might hold clinical benefits. Eur J Radiol 94:31–37. https://doi.org/10.1016/j.ejrad.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Roth R, Germaine P, Ren S, Lee M, Hunter K, Tinney E, Liao L (2017) Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): a retrospective comparison in 66 breast lesions. Diagn Interv Imaging 98(2):113–123. https://doi.org/10.1016/j.diii.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  16. Patel BK, Naylor ME, Kosiorek HE, Lopez-Alvarez YM, Miller AM, Pizzitola VJ, Pockaj BA (2017) Clinical utility of contrast-enhanced spectral mammography as an adjunct for tomosynthesis-detected architectural distortion. Clin Imaging 46:44–52. https://doi.org/10.1016/j.clinimag.2017.07.003

    Article  PubMed  Google Scholar 

  17. Mori M, Akashi-Tanaka S, Suzuki S, Daniels MI, Watanabe C, Hirose M, Nakamura S (2017) Diagnostic accuracy of contrast-enhanced spectral mammography in comparison to conventional full-field digital mammography in a population of women with dense breasts. Breast Cancer 24(1):104–110. https://doi.org/10.1007/s12282-016-0681-8

    Article  PubMed  Google Scholar 

  18. Richter V, Hatterman V, Preibsch H, Bahrs SD, Hahn M, Nikolaou K, Wiesinger B (2018) Contrast-enhanced spectral mammography in patients with MRI contraindications. Acta Radiol 59:798–805. https://doi.org/10.1177/0284185117735561

    Article  PubMed  Google Scholar 

  19. Lewis TC, Pizzitola VJ, Giurescu ME, Eversman WG, Lorans R, Robinson KA, Patel BK (2017) Contrast-enhanced digital mammography: a single-institution experience of the first 208 cases. Breast J 23(1):67–76. https://doi.org/10.1111/tbj.12681

    Article  PubMed  Google Scholar 

  20. Tagliafico AS, Bignotti B, Rossi F, Signori A, Sormani MP, Valdora F, Calabrese M, Houssami N (2016) Diagnostic performance of contrast-enhanced spectral mammography: systematic review and meta-analysis. Breast 28:13–19. https://doi.org/10.1016/j.breast.2016.04.008

    Article  PubMed  Google Scholar 

  21. Covington MF, Pizzitola VJ, Lorans R, Pockaj BA, Northfelt DW, Appleton CM, Patel BK (2018) The Future of contrast-enhanced mammography. AJR Am J Roentgenol 210(2):292–300. https://doi.org/10.2214/AJR.17.18749

    Article  PubMed  Google Scholar 

  22. Badr S, Laurent N, Regis C, Boulanger L, Lemaille S, Poncelet E (2014) Dual-energy contrast-enhanced digital mammography in routine clinical practice in 2013. Diagn Interv Imaging 95(3):245–258. https://doi.org/10.1016/j.diii.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Kamal RM, Helal MH, Mansour SM, Haggag MA, Nada OM, Farahat IG, Alieldin NH (2016) Can we apply the MRI BI-RADS lexicon morphology descriptors on contrast-enhanced spectral mammography? Br J Radiol 89:20160157. https://doi.org/10.1259/bjr.20160157

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kamal RM, Helal MH, Wessam R, Mansour SM, Godda I, Alieldin N (2015) Contrast-enhanced spectral mammography: impact of the qualitative morphology descriptors on the diagnosis of breast lesions. Eur J Radiol 84(6):1049–1055. https://doi.org/10.1016/j.ejrad.2015.03.005

    Article  Google Scholar 

  25. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA (2013) ACR BI-RADS® atlas, breast imaging reporting and data system. American College of Radiology, Reston

    Google Scholar 

  26. Obuchowski NA (2003) Receiver operating characteristic curves and their use in radiology. Radiology 229(1):3–8. https://doi.org/10.1148/radiol.2291010898

    Article  PubMed  Google Scholar 

  27. Wallis M, Borrelli C, Cohen S, Duncan A, Given-Wilson R, Jenkins J, Kearins O, Pinder S, Sharma N, Sibbering M, Steel J, Turnbull A (2016) Clinical guidance for breast cancer screening assessment. Public Health England, London. https://associationofbreastsurgery.org.uk/media/1414/nhs-bsp-clinical-guidance-for-breast-cancer-screening-assessment.pdf

  28. Cheung YC, Tsai HP, Lo YF, Ueng SH, Huang PC, Chen SC (2016) Clinical utility of dual-energy contrast-enhanced spectral mammography for breast microcalcifications without associated mass: a preliminary analysis. Eur Radiol 26(4):1082–1089. https://doi.org/10.1007/s00330-015-3904-z

    Article  PubMed  Google Scholar 

  29. Tennant SL, James JJ, Cornford EJ, Chen Y, Burrell HC, Hamilton LJ, Girio-Fragkoulakis C (2016) Contrast-enhanced spectral mammography improves diagnostic accuracy in the symptomatic setting. Clin Radiol 71(11):1148–1155. https://doi.org/10.1016/j.crad.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Li K, Wang L, Zhang J, Zhou Z, Feng Y (2016) Preclinical study of diagnostic performances of contrast-enhanced spectral mammography versus MRI for breast diseases in China. Springerplus 5(1):763. https://doi.org/10.1186/s40064-016-2385-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fallenberg EM, Schmitzberger FF, Amer H, Ingold-Heppner B, Balleyguier C, Diekmann F, Engelken F, Mann RM, Renz DM, Bick U, Hamm B, Dromain C (2016) Contrast-enhanced spectral mammography vs. mammography and MRI—clinical performance in a multi-reader evaluation. Eur Radiol. https://doi.org/10.1007/s00330-016-4650-6

    Article  PubMed  Google Scholar 

  32. Luczynska E, Heinze-Paluchowska S, Hendrick E, Dyczek S, Rys J, Herman K, Blecharz P, Jakubowicz J (2015) Comparison between breast MRI and contrast-enhanced spectral mammography. Med Sci Monit 21:1358–1367. https://doi.org/10.12659/MSM.893018

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bennani-Baiti B, Baltzer PA (2017) MR imaging for diagnosis of malignancy in mammographic microcalcifications: a systematic review and meta-analysis. Radiology 283(3):692–701. https://doi.org/10.1148/radiol.2016161106

    Article  PubMed  Google Scholar 

  34. Medeiros LR, Duarte CS, Rosa DD, Edelweiss MI, Edelweiss M, Silva FR, Winnnikow EP, Simoes Pires PD, Rosa MI (2011) Accuracy of magnetic resonance in suspicious breast lesions: a systematic quantitative review and meta-analysis. Breast Cancer Res Treat 126(2):273–285. https://doi.org/10.1007/s10549-010-1326-9

    Article  PubMed  Google Scholar 

  35. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H (2012) The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol 198(3):W292–W295. https://doi.org/10.2214/AJR.10.6049

    Article  PubMed  Google Scholar 

  36. Nelson HD, O’Meara ES, Kerlikowske K, Balch S, Miglioretti D (2016) Factors associated with rates of false-positive and false-negative results from digital mammography screening: an analysis of registry data. Ann Intern Med 164(4):226–235. https://doi.org/10.7326/M15-0971

    Article  PubMed  PubMed Central  Google Scholar 

  37. Travieso Aja MD, Santana Lopez G, Rodriguez Rodriguez M, Luzardo OP (2016) Is contrast-enhanced spectral mammography (CESM) helpful in differentiating diabetic mastopathy from breast carcinoma? J Med Imaging Radiat Oncol. https://doi.org/10.1111/1754-9485.12446

    Article  PubMed  Google Scholar 

  38. Blum KS, Rubbert C, Mathys B, Antoch G, Mohrmann S, Obenauer S (2014) Use of contrast-enhanced spectral mammography for intramammary cancer staging: preliminary results. Acad Radiol 21(11):1363–1369. https://doi.org/10.1016/j.acra.2014.06.012

    Article  PubMed  Google Scholar 

  39. Travieso Aja MD, Munoz P, Rodriguez Rodriguez M, Vega Benitez V, Luzardo OP (2016) A case of a concurrent and co-located invasive carcinoma and a fibroadenoma to illustrate the potential of dual-energy, contrast-enhanced digital mammography on the diagnosis of complex breast lesions. Iran J Radiol 13(3):e32190. https://doi.org/10.5812/iranjradiol.32190

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jochelson MS, Dershaw DD, Sung JS, Heerdt AS, Thornton C, Moskowitz CS, Ferrara J, Morris EA (2013) Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 266(3):743–751. https://doi.org/10.1148/radiol.12121084

    Article  PubMed  Google Scholar 

  41. McGuire A, O’Leary DP, Livingstone V, Khan Z, O’Connell F, Paul H, Relihan N, Ryan M (2017) Contrast-enhanced spectrum mammography—a useful adjunct to digital mammography in predicting tumor size. Breast J. https://doi.org/10.1111/tbj.12774

    Article  PubMed  Google Scholar 

  42. Katz B, Raker C, Edmonson D, Gass J, Stuckey A, Rizack T (2017) Predicting breast tumor size for pre-operative planning: which imaging modality is best? Breast J 23(1):52–58. https://doi.org/10.1111/tbj.12680

    Article  PubMed  Google Scholar 

  43. Gruber IV, Rueckert M, Kagan KO, Staebler A, Siegmann KC, Hartkopf A, Wallwiener D, Hahn M (2013) Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer. BMC Cancer 13:328. https://doi.org/10.1186/1471-2407-13-328

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mennella S, Garlaschi A, Paparo F, Perillo M, Celenza M, Massa T, Rollandi GA, Garlaschi G (2015) Magnetic resonance imaging of breast cancer: factors affecting the accuracy of preoperative lesion sizing. Acta Radiol 56(3):260–268. https://doi.org/10.1177/0284185114524089

    Article  PubMed  Google Scholar 

  45. Lai HW, Chen DR, Wu YC, Chen CJ, Lee CW, Kuo SJ, Chen ST, Wu HK (2015) Comparison of the diagnostic accuracy of magnetic resonance imaging with sonography in the prediction of breast cancer tumor size: a concordance analysis with histopathologically determined tumor size. Ann Surg Oncol 22(12):3816–3823. https://doi.org/10.1245/s10434-015-4424-4

    Article  PubMed  Google Scholar 

  46. Rominger M, Berg D, Frauenfelder T, Ramaswamy A, Timmesfeld N (2016) Which factors influence MRI-pathology concordance of tumour size measurements in breast cancer? Eur Radiol 26(5):1457–1465. https://doi.org/10.1007/s00330-015-3935-5

    Article  CAS  PubMed  Google Scholar 

  47. Baek SH, Choi WJ, Cha JH, Kim HH, Shin HJ, Chae EY (2017) Comparison of mammography, ultrasound, and MRI in size assessment of ductal carcinoma in situ with histopathologic correlation. Acta Radiol. https://doi.org/10.1177/0284185117698860

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Pérez-Luzardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travieso-Aja, M.M., Maldonado-Saluzzi, D., Naranjo-Santana, P. et al. Diagnostic performance of contrast-enhanced dual-energy spectral mammography (CESM): a retrospective study involving 644 breast lesions. Radiol med 124, 1006–1017 (2019). https://doi.org/10.1007/s11547-019-01056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-01056-2

Keywords

Navigation