Skip to main content
Log in

A prospective phase II study of magnetic resonance imaging guided hematopoietical bone marrow-sparing intensity-modulated radiotherapy with concurrent chemotherapy for rectal cancer

  • MAGNETIC RESONANCE IMAGING
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To reduce acute hematologic toxicity (HT) in rectal cancer patients treated with neoadjuvant concurrent chemoradiotherapy by sparing the hematopoietical bone marrow (BM) indentified by magnetic resonance (MR).

Materials and methods

A total of 35 staged II/III rectal cancer patients were prospectively enrolled. MR images of pelvis were fused with the simulating CT images. Active BM indentified by MR was contoured as an organ at risk in the treatment plan. The neoadjuvant treatment regimen consisted of 50 Gy of radiation delivered in 25 fractions, 5 days per week, with concurrent daily capecitabine (1650 mg/m2/day, twice daily during RT course) and weekly oxiliplatin 50 mg/m2/qw. Multivariable linear regression model is used to test correlation between HT and dose-volume of BM.

Results

Thirty-one patients (88.6 %) had stage T3–4 disease, and 30 patients (85.7 %) had node-positive disease. The median age of cohort was 55 years (range 28–73 years). Only 9 (25.7 %), 6 (17.1 %), 1 (2.9 %) and 1 (2.9 %) experienced acute Grade 2–4 leukopenia, neutropenia, anemia and thrombocytopenia, respectively. Multivariable linear regression revealed increased BM-V5 was significantly associated with decreased WBC nadirs (p = 0.005), decreased ANC nadirs (p = 0.002), and decreased PLT nadirs (p = 0.017). No dose-volume parameters of BM were found to be related with decreased Hb.

Conclusions

The irradiated volume of pelvic BM identified by MR is associated with HT in rectal cancer patients undergoing neoadjuvant concurrent chemoradiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Caluwe L, Van Nieuwenhove Y, Ceelen WP (2013) Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer. Cochrane Database Syst Rev 2:CD006041

    PubMed  Google Scholar 

  2. Gerard JP, Conroy T, Bonnetain F, Bouche O, Chapet O, Closon-Dejardin MT, Untereiner M, Leduc B, Francois E, Maurel J, Seitz JF, Buecher B, Mackiewicz R, Ducreux M, Bedenne L (2006) Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J Clin Oncol 24:4620–4625

    Article  PubMed  Google Scholar 

  3. Bujko K, Nowacki MP, Nasierowska-Guttmejer A, Michalski W, Bebenek M, Kryj M (2006) Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br J Surg 93:1215–1223

    Article  CAS  PubMed  Google Scholar 

  4. Ceelen W, Fierens K, Van Nieuwenhove Y, Pattyn P (2009) Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer: a systematic review and meta-analysis. Int J Cancer 124:2966–2972

    Article  CAS  PubMed  Google Scholar 

  5. Ellis RE (1961) The distribution of active bone marrow in the adult. Phys Med Biol 5:255–258

    Article  CAS  PubMed  Google Scholar 

  6. John C, Roeske AJM (2004) Incorporation of magnetic resonance imaging into intensity modulated whole-pelvic radiation therapy treatment planning to reduce the volume of pelvic bone marrow irradiated. Int Congr Ser 1268:307–312

    Article  Google Scholar 

  7. Roeske JC, Lujan A, Reba RC, Penney BC, Diane Yamada S, Mundt AJ (2005) Incorporation of SPECT bone marrow imaging into intensity modulated whole-pelvic radiation therapy treatment planning for gynecologic malignancies. Radiother Oncol 77:11–17

    Article  PubMed  Google Scholar 

  8. Hayman JA, Callahan JW, Herschtal A, Everitt S, Binns DS, Hicks RJ, Mac Manus M (2011) Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys 79:847–852

    Article  CAS  PubMed  Google Scholar 

  9. Rose BS, Liang Y, Lau SK, Jensen LG, Yashar CM, Hoh CK, Mell LK (2012) Correlation between radiation dose to (1)(8)F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 83:1185–1191

    Article  CAS  PubMed  Google Scholar 

  10. Mauch P, Constine L, Greenberger J, Knospe W, Sullivan J, Liesveld JL, Deeg HJ (1995) Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 31:1319–1339

    Article  CAS  PubMed  Google Scholar 

  11. Hall EJGA (2006) Clinical response of normal tissues. In: Hall EJGA (ed) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 333–337

    Google Scholar 

  12. Fajardo LF, Berthrong M, Anderson RE (2001) Hematopoietic tissue. In: Fajardo LF, Berthrong M, Anderson RE (eds) Radiation pathology. Oxford Univ. Press, Oxford, pp 379–388

    Google Scholar 

  13. Rodel C, Liersch T, Hermann RM, Arnold D, Reese T, Hipp M, Furst A, Schwella N, Bieker M, Hellmich G, Ewald H, Haier J, Lordick F, Flentje M, Sulberg H, Hohenberger W, Sauer R (2007) Multicenter phase II trial of chemoradiation with oxaliplatin for rectal cancer. J Clin Oncol 25:110–117

    Article  PubMed  Google Scholar 

  14. Jin J, Yexiong L, Weihu W, Kai W, Yongwen S, Shulian W, Shiping Z, Yueping L, Hui F, Qu Y, Xinfan L, Zihao Y (2009) Comparison of acute toxicities between two postoperative concurrent chemoradiotherapy regimens of capecitabine with or without oxaliplatin in patients with stage II and III rectal cancer, In Chineses. Chin J Radiat Oncol 18:200–204

    Google Scholar 

  15. Qin X, Jing J, Yexiong L, Weihu W, Shulian W, Yueping L, Yongwen S, Hua R, Hui F, Xin W, Ning L, Yu Z, Xinfan L (2014) The effect of oxaliplatin plus capecitabine in combination radiation for locally advanced lower or middle sited rectal carcinoma. In Chineses. Chin J Radiat Oncol 23:99–103

    Google Scholar 

  16. Brixey CJ, Roeske JC, Lujan AE, Yamada SD, Rotmensch J, Mundt AJ (2002) Impact of intensity-modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys 54:1388–1396

    Article  PubMed  Google Scholar 

  17. van de Bunt L, van der Heide UA, Ketelaars M, de Kort GA, Jurgenliemk-Schulz IM (2006) Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: the impact of tumor regression. Int J Radiat Oncol Biol Phys 64:189–196

    Article  PubMed  Google Scholar 

  18. Chen MF, Tseng CJ, Tseng CC, Kuo YC, Yu CY, Chen WC (2007) Clinical outcome in posthysterectomy cervical cancer patients treated with concurrent Cisplatin and intensity-modulated pelvic radiotherapy: comparison with conventional radiotherapy. Int J Radiat Oncol Biol Phys 67:1438–1444

    Article  CAS  PubMed  Google Scholar 

  19. Lujan AE, Mundt AJ, Yamada SD, Rotmensch J, Roeske JC (2003) Intensity-modulated radiotherapy as a means of reducing dose to bone marrow in gynecologic patients receiving whole pelvic radiotherapy. Int J Radiat Oncol Biol Phys 57:516–521

    Article  PubMed  Google Scholar 

  20. Hong L, Alektiar K, Chui C, LoSasso T, Hunt M, Spirou S, Yang J, Amols H, Ling C, Fuks Z, Leibel S (2002) IMRT of large fields: whole-abdomen irradiation. Int J Radiat Oncol Biol Phys 54:278–289

    Article  PubMed  Google Scholar 

  21. Ahmed RS, Kim RY, Duan J, Meleth S, De Los Santos JF, Fiveash JB (2004) IMRT dose escalation for positive para-aortic lymph nodes in patients with locally advanced cervical cancer while reducing dose to bone marrow and other organs at risk. Int J Radiat Oncol Biol Phys 60:505–512

    Article  PubMed  Google Scholar 

  22. Mell LK, Kochanski JD, Roeske JC, Haslam JJ, Mehta N, Yamada SD, Hurteau JA, Collins YC, Lengyel E, Mundt AJ (2006) Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. Int J Radiat Oncol Biol Phys 66:1356–1365

    Article  PubMed  Google Scholar 

  23. Mell LK, Schomas DA, Salama JK, Devisetty K, Aydogan B, Miller RC, Jani AB, Kindler HL, Mundt AJ, Roeske JC, Chmura SJ (2008) Association between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 70:1431–1437

    Article  PubMed  Google Scholar 

  24. Gershkevitsh E, Clark CH, Staffurth J, Dearnaley DP, Trott KR (2005) Dose to bone marrow using IMRT techniques in prostate cancer patients. Strahlenther Onkol 181:172–178

    Article  PubMed  Google Scholar 

  25. Yankelevitz DF, Henschke CI, Knapp PH, Nisce L, Yi Y, Cahill P (1991) Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. AJR Am J Roentgenol 157:87–92

    Article  CAS  PubMed  Google Scholar 

  26. Blomlie V, Rofstad EK, Skjonsberg A, Tvera K, Lien HH (1995) Female pelvic bone marrow: serial MR imaging before, during, and after radiation therapy. Radiology 194:537–543

    Article  CAS  PubMed  Google Scholar 

  27. Ramsey RG, Zacharias CE (1985) MR imaging of the spine after radiation therapy: easily recognizable effects. AJR Am J Roentgenol 144:1131–1135

    Article  CAS  PubMed  Google Scholar 

  28. Stevens SK, Moore SG, Kaplan ID (1990) Early and late bone-marrow changes after irradiation: MR evaluation. AJR Am J Roentgenol 154:745–750

    Article  CAS  PubMed  Google Scholar 

  29. Vande Berg BC, Lecouvet FE, Moysan P, Maldague B, Jamart J, Malghem J (1997) MR assessment of red marrow distribution and composition in the proximal femur: correlation with clinical and laboratory parameters. Skelet Radiol 26:589–596

    Article  CAS  Google Scholar 

  30. Jin J, Li YX, Liu YP, Wang WH, Song YW, Li T, Li N, Yu ZH, Liu XF (2006) A phase I study of concurrent radiotherapy and capecitabine as adjuvant treatment for operable rectal cancer. Int J Radiat Oncol Biol Phys 64:725–729

    Article  CAS  PubMed  Google Scholar 

  31. Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346

    Article  CAS  PubMed  Google Scholar 

  32. Rose BS, Aydogan B, Liang Y, Yeginer M, Hasselle MD, Dandekar V, Bafana R, Yashar CM, Mundt AJ, Roeske JC, Mell LK (2011) Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 79:800–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Albuquerque K, Giangreco D, Morrison C, Siddiqui M, Sinacore J, Potkul R, Roeske J (2011) Radiation-related predictors of hematologic toxicity after concurrent chemoradiation for cervical cancer and implications for bone marrow-sparing pelvic IMRT. Int J Radiat Oncol Biol Phys 79:1043–1047

    Article  PubMed  Google Scholar 

  34. Liu HH, Wang X, Dong L, Wu Q, Liao Z, Stevens CW, Guerrero TM, Komaki R, Cox JD, Mohan R (2004) Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58:1268–1279

    Article  PubMed  Google Scholar 

  35. Rubin P, Landman S, Mayer E, Keller B, Ciccio S (1973) Bone marrow regeneration and extension after extended field irradiation in Hodgkin’s disease. Cancer 32:699–711

    Article  CAS  PubMed  Google Scholar 

  36. Sacks EL, Goris ML, Glatstein E, Gilbert E, Kaplan HS (1978) Bone marrow regeneration following large field radiation: influence of volume, age, dose, and time. Cancer 42:1057–1065

    Article  CAS  PubMed  Google Scholar 

  37. Scarantino CW, Rubin P, Constine LS (1984) The paradoxes in patterns and mechanism of bone marrow regeneration after irradiation. 1. Different volumes and doses. Radiother Oncol 2:215–225

    Article  CAS  PubMed  Google Scholar 

  38. Sykes MP, Savel H, Chu FC, Bonadonna G, Farrow J, Mathis H (1964) Long-term effects of therapeutic irradiation upon bone marrow. Cancer 17:1144–1148

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Jing.

Ethics declarations

This study was supported by Beijing Hope Run Special Fund (Grant number LC2012B22). This study has been registered on htttp://www.Clinicaltrials.gov. The registration number is NCT 01863420.

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of our Institutional Ethics Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jianyang, W., Yuan, T., Yuan, T. et al. A prospective phase II study of magnetic resonance imaging guided hematopoietical bone marrow-sparing intensity-modulated radiotherapy with concurrent chemotherapy for rectal cancer. Radiol med 121, 308–314 (2016). https://doi.org/10.1007/s11547-015-0605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-015-0605-2

Keywords

Navigation