Skip to main content
Log in

Role of whole-body diffusion-weighted MRI in detecting bone metastasis

  • Musculoskeletal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare the results of whole-body diffusion-weighted magnetic resonance (DW-MR) imaging with staging based on computed tomography (CT) and nuclear scintigraphy using Tc99m results as the standard of reference.

Methods and materials

Seventeen patients with known malignant tumours were included in the study. The thorax and the abdomen were imaged using breath-hold diffusion-weighted imaging and T1-weighted imaging sequences in the coronal plane. Location and size of osseous metastases were documented by two experienced radiologists. Whole-body DW-MR imaging findings were compared with results obtained at skeletal scintigraphy and CT bone survey.

Results

The mean examination time for whole-body DW-MR imaging was 25.5 min. All bone metastases regardless of the size were identified with whole-body DW-MR imaging; MR imaging depicted more bone metastases than CT. Skeletal scintigraphy depicted osseous metastases in 13 patients (with greater sensitivity to the lower limb), whereas whole-body DW-MR imaging revealed osseous metastases in 13 patients (with greater sensitivity to the spine). DW-MR did not show good results for detection of rib cage metastases. The additional osseous metastases seen with MR imaging were confirmed at follow-up examinations and some had a change in therapy. MR identified 22 % more metastatic lesions when compared to bone scintigraphy and 119 % when compared to CT. Bone scintigraphy identified 80 % more metastatic lesions when compared to CT. On a per-patient basis, whole-body DW-MR imaging revealed sensitivity and specificity values of 100 %.

Conclusion

Whole-body DW-MR imaging was more sensitive in the detection of osseous metastases than were skeletal scintigraphy and CT bone survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Graph 1
Graph 2

Similar content being viewed by others

References

  1. Huisman TA (2003) Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 13:2283–2297

    Article  PubMed  Google Scholar 

  2. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  3. Li S, Sun F, Jin ZY et al (2007) Whole-body diffusion-weighted imaging: technical improvement and preliminary results. J Magn Reson Imaging 26:1139–1144

    Article  PubMed  CAS  Google Scholar 

  4. Balliu E, Boada M, Peláez I et al (2010) Comparative study of whole-body MRI and bone scintigraphy for the detection of bone metastases. Clin Radiol 65:989–996

    Article  PubMed  CAS  Google Scholar 

  5. Wüppenhorst N, Maier C, Frettlöh J et al (2003) Sensitivity and specificity of 3-phase bone scintigraphy in the diagnosis of complex regional pain syndrome of the upper extremity. Clin J Pain 3:182–189

    Google Scholar 

  6. Eiber M, Holzapfel K, Ganter C et al (2011) Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging 33:1160–1170

    Article  PubMed  Google Scholar 

  7. Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  8. Murtz P, Krautmacher C, Traber F et al (2007) Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla. Eur Radiol 17:3031–3037

    Article  PubMed  Google Scholar 

  9. Hargaden G, O’Connell M, Kavanagh E et al (2003) Current concepts in whole-body imaging using turbo-short tau inversion recovery MR imaging. AJR Am J Roentgenol 180:247–252

    Article  PubMed  CAS  Google Scholar 

  10. Luboldt W, Küfer R, Blumstein N et al (2008) Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/TC for detection of bone metastases. Radiology 249:1017–1025

    Article  PubMed  Google Scholar 

  11. Takenaka D, Ohno Y, Matsumoto K et al (2009) Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion weighted imaging (DWI), whole body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30:289–308

    Article  Google Scholar 

  12. Nakanishi K, Kobayashi M, Nakaguchi K et al (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 6:147–155

    Article  PubMed  Google Scholar 

  13. Schmidt GP, Schoenberg SO, Schmid R et al (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949

    Article  PubMed  Google Scholar 

  14. Lauenstein TC, Goehde SC, Herborn CU et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148

    Article  PubMed  Google Scholar 

  15. Sohaib SA, Cook G, Allen SD et al (2009) Comparison of whole-body MRI and bone scintigraphy in the detection of bone metastases in renal cancer. Br J Radiol 82:632–639

    Article  PubMed  CAS  Google Scholar 

  16. Gutzeit A, Doert A, Froehlich JM et al (2010) Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Eur Radiol 39:333–343

    Google Scholar 

  17. Söderlund V (1996) Radiological diagnosis of skeletal metastases. Eur Radiol 6:587–595

    Article  PubMed  Google Scholar 

  18. Bombardieri E, Aktolun C, Baum RP et al (2003) Bone scintigraphy: procedure guidelines for tumor imaging. Eur J Nucl Med Mol Imaging 12:2062–2068

    Google Scholar 

  19. Schlemmer H, Schäfer J, Pfannenberg C et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71

    Article  PubMed  Google Scholar 

  20. Barkhausen J, Quick HH, Lauenstein T et al (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220:252–256

    Article  PubMed  CAS  Google Scholar 

  21. Lian-Ming W, Hai-Yan G et al (2011) Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. J Magn Reson Imaging 34:125–128

    Google Scholar 

  22. Ghanem N, Altehoefer C, Kelly T et al (2006) Whole-body MRI in comparison to skeletal scintigraphy in detection of skeletal metastases in patients with solid tumors. In Vivo 20:173–182

    PubMed  CAS  Google Scholar 

  23. Altehoefer C, Ghanem N, Högerle S et al (2001) Comparative detectability of bone metastases and impact on therapy of magnetic resonance imaging and bone scintigraphy in patients with breast cancer. Eur J Radiol 40:16–23

    Article  PubMed  CAS  Google Scholar 

  24. Engelhard K, Hollenbach HP, Wohlfart K et al (2004) Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer. Eur Radiol 14:99–105

    Article  PubMed  CAS  Google Scholar 

  25. Padhani AR, Dow-Mu Collins DJ (2011) Whole-body diffusion weighted MR imaging in cancer: current status and research directions. Radiology 261:700–718

    Article  PubMed  Google Scholar 

  26. Groves AM, Beadsmoore CJ, Cheow HK et al (2006) Can 16-detector multislice CT exclude skeletal lesions during tumor staging? Implications for the cancer patient. Eur Radiol 16:1066–1073

    Article  PubMed  Google Scholar 

  27. Buhmann Kirchhoff S, Becker C, Duerr HR et al (2009) Detection of osseous metastases of the spine: comparison of high-resolution multi-detector-CT with MRI. Eur J Radiol 69:567–573

    Article  PubMed  Google Scholar 

  28. Stecco A, Lombardi M, Leva L et al (2013) Diagnostic accuracy and agreement between whole-body diffusion MRI and bone scintigraphy in detecting bone metastases. Radiol Med 118:465–475

    Article  PubMed  CAS  Google Scholar 

  29. Taoka T, Mayr NA, Lee HJ et al (2006) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. AJR Am J Roentgenol 176:1525–1530

    Article  Google Scholar 

  30. Adiga GU, Dutcher JP, Larkin M et al (2004) Characterization of bone metastases in patients with renal cell cancer. BJU Int 93:1237–1240

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Riccardo Del Vescovo, Giulia Frauenfelder, Francesco Giurazza, Claudia Lucia Piccolo, Roberto Luigi Cazzato, Rosario Francesco Grasso, Emiliano Schena, Bruno Beomonte Zobel declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Del Vescovo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Vescovo, R., Frauenfelder, G., Giurazza, F. et al. Role of whole-body diffusion-weighted MRI in detecting bone metastasis. Radiol med 119, 758–766 (2014). https://doi.org/10.1007/s11547-014-0395-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-014-0395-y

Keywords

Navigation