Skip to main content
Log in

CT exposure in adult and paediatric patients: a review of the mechanisms of damage, relative dose and consequent possible risks

  • Medical Physics Radiobiology And Safety
  • Published:
La radiologia medica Aims and scope Submit manuscript

An Erratum to this article was published on 09 April 2014

Abstract

An increase has been observed not only in the absolute number of CT examinations but also in the length of coverage and number of scanning phases, with the result that exposure to ionising radiation from CT is becoming an increasingly serious problem. The extent of the problem is not entirely known and cannot be adequately addressed without proper knowledge of all the phases that leads to the effective dose calculation. In light of the growing awareness of the issue of ionising radiation dose and the possible risk for the individual and the population, there is a need for radiologists, medical physicists and radiographers to play an active role in dose management. In this review, the authors try to delineate the problem in a consequential and multifaceted way: radiation–patient interaction, possible mechanisms of damage, main CT dose units, risk and its quantification in the population, with the aim of optimising the acquisition dose without diagnostic drawbacks. For an “up-to-date” use of CT, radiologists must know the dose concerns for the single patient and population, and use the CT apparatus with the best dose care; substitute CT with other diagnostic techniques when possible, especially in children; reduce the number/extension of scans and phases, and the dose in single scans and single examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. SIRM SAGO (2010) Censimento nazionale delle risorse umane e tecnologiche dell’area radiologica. Il Radiologo Suppl 2:3–39

    Google Scholar 

  2. IMV (2012) CT benchmark report. GreenBelt, USA

    Google Scholar 

  3. Frush DP (2004) Review of radiation issue for CT. Sem Ultras CT MRI 25:17–24

    Article  Google Scholar 

  4. Balonov MI, Shrimpton PC (2012) Effective dose and risks from medical x-ray procedures. Ann ICRP 41:129–141

    Article  PubMed  CAS  Google Scholar 

  5. California Senate Bill 1237. http://www.leginfo.ca.gov/pub/09-10/bill/sen/sb_1201-1250/sb_1237_bill_20100929_chaptered.html. Accessed Jan 2013

  6. Mancuso MT, Pasquali E, Leopardi S et al (2008) Oncogenic bystander radiation effects in patched heterozygous mouse cerebellum. PNAS 105:12445–12450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Jessen KA, Panzer W, Shrimpton PC et al (2000) EUR 16262: European guidelines on quality criteria for computed tomography. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  8. Huda W, Magill D (2011) CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys 38:1261–1265

    Article  PubMed  Google Scholar 

  9. D.Lgs 187 (2000) Attuazione della direttiva 97/43/Euratom in materia di protezione sanitaria delle persone contro i pericoli delle radiazioni ionizzanti connesse ad esposizioni mediche

  10. Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980

    Article  PubMed  CAS  Google Scholar 

  11. Origgi D, Vigorito S, Villa G et al (2006) Survey of computed tomography techniques and absorbed dose in Italian hospitals: a comparison between two methods to estimate the dose-length product and the effective dose and to verify fulfillment of the diagnostic reference levels. Eur Radiol 16:227–237

    Article  PubMed  Google Scholar 

  12. Palorini F, Origgi D, Granata C, Matranga D, Salerno S (2014) Adult exposures from MDCT including multiphase studies: first Italian nationwide survey. Eur Radiol 24:469–483

    Article  PubMed  Google Scholar 

  13. Brenner DJ, Elliston CD, Hall EJ, Berdon WE (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol 176:289–296

    Article  CAS  Google Scholar 

  14. Huda W, Vance A (2002) Patient radiation doses from adult and pediatric CT. Pediatr Radiol 32:540–546

    Google Scholar 

  15. Axelsson B, Persliden J, Schuwert P (1996) Dosimetry for computed tomography examinations of children. Radiat Prot Dosim 64:221–226

    Article  Google Scholar 

  16. Giacco G, Cannata V, Furetta C et al (2001) On the use of paediatric phantoms in the dose evaluation during computed tomography (CT) thorax examinations. Med Phys 28:199–204

    Article  PubMed  CAS  Google Scholar 

  17. Lee C, Lee C, Staton RJ et al (2007) Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination. Med Phys 34:1858–1873

    Article  PubMed  Google Scholar 

  18. Varchena V (2002) Pediatric phantoms. Pediatr Radiol 32:280–284

    Article  PubMed  Google Scholar 

  19. Khursheed A, Hillier MC, Shrimpton PC, Wall BF (2002) Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol 75:819–830

    Article  PubMed  CAS  Google Scholar 

  20. Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  PubMed  Google Scholar 

  21. Tricarico F, Hlavacek AM, Schoepf UJ et al (2013) Cardiovascular CT angiography in neonates and children: image quality and potential for radiation dose reduction with iterative image reconstruction techniques. Eur Radiol 23:1306–1315

    Article  PubMed  Google Scholar 

  22. Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108

    Article  PubMed  Google Scholar 

  23. ICRP (2007) The 2007 Recommendations of the International Commission on radiological protection. ICRP Publication 103. Ann ICRP 37:2–4

    Article  Google Scholar 

  24. BEIR VII (2005) Health risks from exposure to low levels of ionizing radiation. National Academies Press, Washington, DC

  25. NCRP report 160. Ionizing radiation exposure of the population of the United States. http://www.ncrppublications.org/reports/160. Accessed Jan 2013

  26. UNSCEAR (2006) Effects of ionizing radiation. UNSCEAR 2006 report, vol. I, Annex A. United Nations, New York

  27. Verdun FR, Bochud F, Gundinchet F et al (2008) Quality initiatives radiation risk: what you should know to tell your patient. Radiographics 28:1807–1816

    Article  PubMed  Google Scholar 

  28. Krille L, Zeeb H, Jahnen A et al (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51:103–111

    Article  PubMed  Google Scholar 

  29. Pauwels EK, Bourguingon M (2011) Cancer induction caused by radiation due to computed tomography: a critical note. Acta Radiol 52:767–773

    Article  PubMed  Google Scholar 

  30. ICRP (2005) Low-dose extrapolation of radiation-related cancer risk. ICRP Publication 99. Ann ICRP, vol 35(4), Elsevier

  31. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  32. Brenner DJ, Doll R, Goodhead DT et al (2003) Cancer risks attributable to low dose of ionizing radiation: assessing what we really know. PNAS 100:13761–13766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Meer AB, Basu PA, Baker LC, Atlas SW (2012) Exposure to ionizing radiation and estimate of secondary cancers in the era of high-speed CT scanning: projections from the Medicare population. J Am Coll Radiol 9:245–250

    Article  PubMed  Google Scholar 

  34. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  PubMed  PubMed Central  Google Scholar 

  35. Matthews JD, Forsythe A, Brady Z et al (2013) Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescent: data linkage study of 11 million Australians. BMJ 346:1–18

    Article  Google Scholar 

  36. Neumaier T, Swenson J, Pham C et al (2012) Evidence for formation of DNA repair centers and dose–response nonlinearity in human cells. Proc Natl Acad Sci USA 109:443–448

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoel DG, Li P (1998) Threshold models in radiation carcinogenesis. Health Phys 75:241–250

    Article  PubMed  CAS  Google Scholar 

  38. Chen WL, Luan YC, Shieh MC et al (2007) Effects of cobalt-60 exposure on health of Taiwan residents suggest new approach needed in radiation protection. Dose Response 5:63–75

    Article  CAS  PubMed Central  Google Scholar 

  39. Gower-Thomes K, Lewis MH, Shiralkar S et al (2002) Doctors’ knowledge of radiation exposures is deficient. BMJ 324:919

    Article  Google Scholar 

  40. Shiralkar S, Rennie M, Snow M et al (2003) Doctor’s knowledge of radiation exposure: questionnaire study. BMJ 327:371–372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Royal College of Radiologists (2007) Making the best use of clinical radiology services (MBUR) referral guidelines, 6th edn. Royal College of Radiologists, London

  42. Commissione Europea. Linee guida per l’esposizione a radiazioni a scopo medico (2000) http://ec.europa.eu/energy/nuclear/radioprotection/publication/doc/099_it.pdf. Accessed Jan 2013

  43. D.Lgs 230 (1995). Attuazione delle direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 2006/117/Euratom in materia di radiazioni ionizzanti e 2009/71/Euratom, in materia di sicurezza nucleare degli impianti nucleari

Download references

Conflict of interest

Stefano Colagrande, Daniela Origgi, Giovanna Zatelli, Andrea Giovagnoni, Sergio Salerno declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Colagrande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colagrande, S., Origgi, D., Zatelli, G. et al. CT exposure in adult and paediatric patients: a review of the mechanisms of damage, relative dose and consequent possible risks. Radiol med 119, 803–810 (2014). https://doi.org/10.1007/s11547-014-0393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-014-0393-0

Keywords

Navigation