Skip to main content

Advertisement

Log in

Impact of a breathing-control system on target margins and normal-tissue sparing in the treatment of lung cancer: experience at the radiotherapy unit of Florence University

  • Radiotherapy
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

In lung cancer, a high radiation dose to the target area correlates with better local control but is frequently counterbalanced by a higher risk of lung toxicity. Several methods exist to coordinate respiratory motion in lung radiotherapy. We aimed to investigate the impact of a breathing-control system on irradiated volumes and dosimetric parameters in three-dimensional conformal radiotherapy (3D-CRT) and stereotactic radiotherapy (SRT) treatments.

Materials and methods

Twelve patients were scheduled for radical radiotherapy: five for SRT and seven for 3D-CRT. For each patient, in addition to the free-breathing computed tomography (CT) scan, four additional sets of CT slices were acquired using the Active Breathing Coordinator device (ABC, Elekta Oncology Systems Ltd., UK).

Results

The volumes acquired with the ABC device were significantly smaller than the free-breathing volumes [23 % reduction of planning tumour volume (PTV), p = 0.002]. ABC allowed a reduction of all dosimetric parameters [2.28 % reduction of percentage volume of lung treated to a dose of ≥20 Gy (V20), p = 0.004; 10 % reduction of mean lung dose (MLD), p = 0.009]. Significant differences were found both in SRT and in 3D-CRT, in peripheral and apical lesions.

Conclusion

In our experience, ABC has the potential to reduce lung toxicity in the treatment of lung cancer; alternatively, it can allow the prescribed dose to be increased while maintaining the same risk of lung toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marks LB, Bentzen SM, Deasy JO et al (2010) Radiation-dose volume effect on the lung. Int J Radiat Oncol Biol Phys 76:S70–S76

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rosenzweig KE, Hanley J, Mah D et al (2000) The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 48:81–87

    Article  CAS  PubMed  Google Scholar 

  3. Fenwick JD, Nahum AE, Malik ZI et al (2009) Escalation and intensification of radiotherapy for stage III non-small cell lung cancer: opportunities for treatment improvement. Clin Oncol 21:343–360

    Article  CAS  Google Scholar 

  4. Senan S, De Ruysscher D, Giraud P et al (2004) Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer. Radiother Oncol 71:139–146

    Article  PubMed  Google Scholar 

  5. Slotman BJ, Senan S (2011) Radiotherapy in small-cell lung cancer: lessons learned and future directions. Int J Radiat Oncol Biol Phys 79:998–1003

    Article  PubMed  Google Scholar 

  6. Negoro Y, Nagata Y, Aoki T et al (2001) A new irradiation system for lung cancer combining linear accelerator, computed tomography, patient self-breath-holding, and patient-directed beam-control without respiratory monitoring devices. Int J Radiat Oncol Biol Phys 50:889–898

    Article  CAS  PubMed  Google Scholar 

  7. Graham MV, Purdy JA, Emami B et al (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    Article  CAS  PubMed  Google Scholar 

  8. Marks LB (2002) Dosimetric predictors of radiation-induced lung injury. Int J Radiat Oncol Biol Phys 54:313–316

    Article  PubMed  Google Scholar 

  9. Wang S, Liao Z, Wei X et al (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66:1399–1407

    Article  CAS  PubMed  Google Scholar 

  10. Yorke ED, Jackson A, Rosenzweig KE et al (2002) Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 54:329–339

    Article  PubMed  Google Scholar 

  11. Tsujino K, Hirota S, Endo M et al (2003) Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 55:110–116

    Article  PubMed  Google Scholar 

  12. Panakis N, McNair HA, Christian JA et al (2008) Defining the margins in the radical radiotherapy of non-small cell lung cancer (NSCLC) with active breathing control (ABC) and the effect on physical lung parameters. Radiother Oncol 87:65–73

    Article  PubMed  Google Scholar 

  13. Ross CS, Hussey DH, Pennington EC et al (1990) Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Radiat Oncol Biol Phys 18:671–677

    Article  CAS  PubMed  Google Scholar 

  14. ICRU (1999) Prescribing, recording and reporting photon beam therapy. Supplement to ICRU Report 50, ICRU Report 62. ICRU, Bethesda, MD, pp 4–52

  15. McNair HA, Brock J, Symonds-Tayler JR et al (2009) Feasibility of the use of the active breathing coordinator (ABC) in patients receiving radical radiotherapy for non-small cell lung cancer (NSCLC). Radiother Oncol 93:424–429

    Article  PubMed  Google Scholar 

  16. Kirkbride P, Hatton M, Lorigan P et al (2002) Fatal pulmonary fibrosis associated with induction chemotherapy with carboplatin and vinorelbine followed by CHART radiotherapy for locally advanced non-small cell lung cancer. Clin Oncol 14:361–366

    Article  Google Scholar 

  17. Kwa SL, Lebesque JV, Theuws JC et al (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9

    Article  CAS  PubMed  Google Scholar 

  18. Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    Article  CAS  PubMed  Google Scholar 

  19. Dehing-Oberije C, De Ruysscher D, van Baardwijk A et al (2009) The importance of patient characteristics for the prediction of radiation-induced lung toxicity. Radiother Oncol 91:421–426

    Article  PubMed  Google Scholar 

  20. Nakayama H, Satoh H, Kurishima K et al (2010) High-dose conformal radiotherapy for patients with stage III non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 78:645–650

    Article  PubMed  Google Scholar 

  21. Shen Y, Zhang H, Wang J et al (2010) Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control. Radiat Oncol 5:19

    Article  PubMed Central  PubMed  Google Scholar 

  22. Vogelius IS, Westerly DC, Cannon GM et al (2010) Hypofractionation does not increase radiation pneumonitis risk with modern conformal radiation delivery techniques. Acta Oncol 49:1052–1057

    Article  PubMed  Google Scholar 

  23. Brock J, McNair HA, Panakis N et al (2011) The use of the active breathing coordinator throughout radical non-small-cell lung cancer (NSCLC) radiotherapy. Int J Radiat Oncol Biol Phys 81:369–375

    Article  PubMed  Google Scholar 

  24. Wang J, Zhong R, Bai S et al (2010) Evaluation of positioning accuracy of four different immobilizations using cone-beam CT in radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 77:1274–1281

    Article  PubMed  Google Scholar 

  25. Shirato H, Suzuki K, Sharp GC et al (2000) Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 64:1229–1236

    Article  Google Scholar 

Download references

Conflict of interest

V. Scotti, L. Marrazzo, C. Saieva, B. Agresti, I. Meattini, I. Desideri, S. Cecchini, S. Bertocci, C. Franzese, C. De Luca Cardillo, G. Zei, M. Loi, D. Greto, M. Mangoni, P. Bonomo, L. Livi, G. Biti declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vieri Scotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scotti, V., Marrazzo, L., Saieva, C. et al. Impact of a breathing-control system on target margins and normal-tissue sparing in the treatment of lung cancer: experience at the radiotherapy unit of Florence University. Radiol med 119, 13–19 (2014). https://doi.org/10.1007/s11547-013-0307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-013-0307-6

Keywords

Navigation