Skip to main content
Log in

Role of diffusion-weighted magnetic resonance imaging in prostate cancer evaluation

Ruolo della risonanza magnetica con imaging di diffusione nella valutazione del carcinoma prostatico

  • Urogenital Radiology / Radiologia Uro-Genitale
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The authors analysed the role of diffusion-weighted imaging (DWI) as an additional tool in magnetic resonance (MR) evaluation of prostate cancer.

Materials and methods

Forty-one patients with suspected prostate cancer underwent MR imaging (1.5 Tesla). A DWI sequence was added to the standard morphological protocol, with a maximum b value of 1,000 s/mm2. Diffusion maps were obtained, and the apparent diffusion coefficient (ADC) was calculated by drawing a region of interest (ROI) over healthy tissue and areas suspicious for malignancy. Histology was considered the gold standard.

Results

The areas correctly classified by MR imaging (42/51) had a low signal intensity on T2-weighted imaging and low ADC value (0.99±0.15 mm2/s; p<0.01) compared with the healthy peripheral zone (PZ) (1.73±0.27 mm2/s; p<0.01). Nine areas classified as suspicious for malignancy on T2-weighted sequences showed high ADC (1.44±0.06 mm2/s; p<0.01) and were confirmed to be disease free by subsequent histological examination. The accuracy of morphofunctional MR imaging was 81.6% compared with 73.7% of the morphological analysis alone.

Conclusions

The addition of DWI to the standard protocol increases the overall diagnostic performance of MR imaging in detecting prostatic cancer. Thus, DWI can help the clinician determine the most appropriate management strategy for the patient.

Riassunto

Obiettivo

Scopo del presente lavoro è stato valutare il ruolo delle sequenze pesate in diffusione (DWI) come strumento addizionale nello studio del carcinoma prostatico in risonanza magnetica (RM).

Materiali e metodi

Quarantuno pazienti con sospetto di neoplasia prostatica sono stati sottoposti a RM (1,5 T). Al protocollo morfologico è stata aggiunta la sequenza single shot (SSh)-DWI sul piano assiale con valore massimo di b pari a 1000 s/mm2. Sono state ricostruite le mappe di diffusione ed il coefficiente di diffusione apparente (ADC) è stato calcolato posizionando le regioni di interesse (ROI) su tessuto sospetto e tessuto sano. L’esame istologico finale è stato considerato il gold standard.

Risultati

Le aree prostatiche correttamente identificate alla valutazione RM come sospette (42 su 51) hanno mostrato basso segnale nelle sequenze T2 pesate ed il corrispondente ADC è risultato statisticamente più basso (0,99±0,15 mm2/s; p<0,01) rispetto al tessuto nella regione periferica sana (1,73±0,27 mm2/s; p<0,01). Nove aree sospette alle sequenze T2 hanno mostrato ADC non tipico per localizzazione cancerose (1,44±0,06 mm2/s; p<0,01): l’esame istologico ha confermato i risultati della DWI. L’accuratezza globale dell’esame RM anatomo-funzionale è stata di 81,6%, più alta rispetto alla sola valutazione morfologica (73,7%).

Conclusioni

Includere la sequenza DWI nel protocollo RM standard migliora la performance diagnostica globale e può aiutare il clinico nel corretto management del paziente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Vilanova JC, Comet J, Garcia-Figueiras R et al (2010) Usefulness of magnetic resonance imaging in prostate cancer. RadiologÌa 52:513–524

    Article  PubMed  CAS  Google Scholar 

  2. Choi YJ, Kim JK, Namkug K et al (2007) Functional MR imaging of prostate cancer. Radiographics 27:63–77

    Article  PubMed  Google Scholar 

  3. Panebianco V, Sciarra A, Ciccariello M et al (2010) Role of magnetic resonance spectroscopic imaging ([1H]MRSI) and dynamic contrast-enhanced MRI (DCEMRI) in identifying prostate cancer foci in patients with negative biopsy and high levels of prostate-specific antigen (PSA). Radiol Med 115:1314–1329

    Article  PubMed  CAS  Google Scholar 

  4. Renken NS, Krestin GP (2005) Magnetic resonance imaging of the kidney. Semin Ultrasound CT MR 26:153–161

    Article  PubMed  Google Scholar 

  5. Kilickesmez O, Yirik G, Bayramoglu S et al (2008) Non-breath-hold high b-value diffusion-weighted MRI with parallel imaging technique: apparent diffusion coefficient determination in normal abdominal organs. Diagn Interv Radiol 14:83–87

    PubMed  Google Scholar 

  6. Kozlowski P, Chang SD, Goldenberg SL (2008) Diffusion-weighted MRI in prostate cancer — comparison between single-shot fast spin echo and echo planar imaging sequences. Magn Reson Imaging 26:72–76

    Article  PubMed  Google Scholar 

  7. Khoury S. Chatelain C (1992) A comparative classification of urological tumors. FIIS, Paris

    Google Scholar 

  8. Portalez D, Rollin G, Leandri P et al (2010) Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies. Eur Radiol 20:2781–2790

    Article  PubMed  Google Scholar 

  9. Issa B (2002) In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reason Imaging 16:196–200

    Article  Google Scholar 

  10. Kiliçkesmez O, Cimilli T, Inci E et al (2009) Diffusion-weighted MRI of urinary bladder and prostate cancers. Diagn Interv Radiol J 15:104–110

    Google Scholar 

  11. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  12. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel inchoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  13. Kitajima K Kaji Y, Kuroda K et al (2008) High b-value diffusion-weighted imaging in normal and malignant peripheral zone tissue of the prostate: effect of signal-to-noise ratio. Magn Reson Med Sci 7:93–99

    Article  PubMed  Google Scholar 

  14. Bammer R, Auer M, keeling SL et al (2002) Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 48:128–136

    Article  PubMed  Google Scholar 

  15. Tamada T, Sone T, Toshimitsu S et al (2008) Age-related and zonal anatomical changes of apparent diffusion coefficient values in normal human prostatic tissues. J Magn Reson Imaging 27:552–556

    Article  PubMed  Google Scholar 

  16. Haider MA, Van der Kwast TH, Tanguay J et al (2007) T2-weghted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189:323–328

    Article  PubMed  Google Scholar 

  17. Miao H, Fukatsu H, Ishigaki T (2007) Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur J Radiol 61:297–302

    Article  PubMed  Google Scholar 

  18. Reinsberg SA, Payne GS, Riches SF et al (2007) Combined use of diffusion.weighted MRI and 1H MR Spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol 188:91–98

    Article  PubMed  Google Scholar 

  19. Kim JK, Jang YJ, Cho G (2009) Multidisciplinary functional MR imaging for prostate cancer. Korean J Radiol 10:535–551

    Article  PubMed  Google Scholar 

  20. Petralia G, Thoeny HC (2010) DW-MRI of the urogenital tract: applications in oncology. Cancer Imaging 10(Spec no A):S112–S123

    Article  PubMed  Google Scholar 

  21. Afaq A, Koh DM, Padhani A et al (2011) Clinical utility of diffusion-weighted magnetic resonance imaging in prostate cancer. BJU Int 108:1716–1722

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rinaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinaldi, D., Fiocchi, F., Ligabue, G. et al. Role of diffusion-weighted magnetic resonance imaging in prostate cancer evaluation. Radiol med 117, 1429–1440 (2012). https://doi.org/10.1007/s11547-012-0832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-012-0832-8

Keywords

Parole chiave

Navigation