Skip to main content

Advertisement

Log in

The value of chemical fat-saturation pulse added to T1-weighted spin-echo sequence in evaluating gadolinium-enhancing brain lesions in multiple sclerosis

Lesioni encefaliche con contrast-enhancement in pazienti affetti da sclerosi multipla: confronto tra sequenze spin-echo T1-pesate convenzionali e con saturazione spettrale del grasso

  • Neuroradiology Neuroradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study was undertaken to assess the value of a chemical (spectral) fat-saturation (fat-sat) pulse added to a T1-weighted spin-echo sequence after intravenous administration of paramagnetic contrast agent in detecting enhancing lesions in multiple sclerosis.

Materials and methods

Twenty patients with relapsing-remitting multiple sclerosis underwent a brain 1.0-Tesla magnetic resonance (MR) scan with T1-weighted spin-echo sequences (24 contiguous para-axial slices with a thickness of 5 mm, pixel size 0.96 mm2, number of excitations 2, flip angle 90°) 5 min after intravenous injection of 0.1 mmol/kg of gadodiamide with and without fat-sat, acquired with randomised order of priority. Two readers counted by consensus the number of enhancing lesions and assigned a conspicuity score (low conspicuity=1; high conspicuity=2) to each enhancing lesion during a randomised reading without any visual comparison between the two corresponding images (with and without fat-sat) of the same patient. McNemar and Wilcoxon matched-pair signed-rank tests were used.

Results

Seventy-two enhancing lesions without fat-sat and 94 with fat-sat were detected; 22 lesions were visible only with fatsat, whereas no lesion was detected only without fat-sat (p<0.0001). The conspicuity score was 1.17±0.38 (mean±standard deviation) and 1.57±0.44, respectively (p<0.0001).

Conclusions

A fat-sat pulse added to a T1-weighted spin-echo sequence increases significantly the number and conspicuity of contrast-enhancing lesions in patients with relapsing-remitting multiple sclerosis.

Riassunto

Obiettivo

Confrontare sequenze spin-echo T1-pesate con e senza saturazione spettrale del grasso dopo somministrazione endovenosa di mezzo di contrasto paramagnetico per il riconoscimento di lesioni encefaliche con contrast-enhancement in pazienti affetti da sclerosi multipla.

Materiali e metodi

Venti pazienti affetti da sclerosi multipla intermittente-remittente sono stati sottoposti a RM encefalica a 1 Tesla con sequenze spin-echo T1-pesate (24 strati para-assiali contigui, spessore 5 mm, pixel 0,96 mm2, 2 eccitazioni, angolo di nutazione 90o) cinque minuti dopo iniezione endovenosa di 0,1 mmol/kg di gadodiamide, con e senza saturazione del grasso, acquisite in ordine temporale randomizzato. Due lettori in consenso hanno contato per entrambe le sequenze, con lettura randomizzata e senza confronto visuale tra le due immagini corrispondenti (con e senza saturazione del grasso) dello stesso paziente, il numero di lesioni focali con contrast-enhancement, assegnando a ciascuna un punteggio di cospicuità (bassa cospicuità=1; alta cospicuità=2). Per l’analisi statistica sono stati utilizzati i test di McNemar e Wilcoxon per ranghi per dati appaiati.

Risultati

Mentre la sequenza senza saturazione del grasso ha consentito il riconscimento di 72 lesioni, quella con saturazione del grasso ha consentito il riconoscimento di 94 lesioni: 22 lesioni erano quindi riconoscibili alla sola sequenza con saturazione del grasso (p<0,0001). Il punteggio di cospicuità è risultato pari a 1,17±0,38 (media±deviazione standard) e 1,57±0,44, rispettivamente (p<0,0001).

Conclusioni

L’integrazione di un preimpulso di saturazione del grasso in una sequenza spin-echo T1-pesata consente di ottenere un significativo incremento del numero e della cospicuità delle lesioni encefaliche con contrast-enhancement in pazienti affetti da sclerosi multipla intermittente-remittente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Fazekas F, Barkhof F, Filippi M et al (1999) The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology 53:448–456

    PubMed  CAS  Google Scholar 

  2. Katz D, Taubenberger JK, Cannella B et al (1993) Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 34:661–669

    Article  PubMed  CAS  Google Scholar 

  3. Barkhof F, Filippi M, Miller DH et al (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120:2059–2069

    Article  PubMed  Google Scholar 

  4. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  5. Molyneux PD, Miller DH (1999) Magnetic resonance imaging techniques to monitor phase III treatment trials. In: Filippi M, Grossman RI, Comi G (eds) Magnetic resonance techniques in clinical trials in multiple sclerosis. Springer, Milano, pp 49–73

    Google Scholar 

  6. Losseff N, Kingsley DPE, McDonald WI et al (1996) Clinical and magnetic resonance predictors of disability in primary and secondary progressive multiple sclerosis. Mult Scler 1:218–222

    PubMed  CAS  Google Scholar 

  7. Koudriavtseva T, Thompson AJ, Fiorelli M et al (1997) Gadolinium enhanced MRI disease activity in relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 62:285–287

    Article  PubMed  CAS  Google Scholar 

  8. Filippi M (2000) Enhanced magnetic resonance imaging in multiple sclerosis. Mult Scler 6:320–326

    PubMed  CAS  Google Scholar 

  9. Sardanelli F, Losacco C, Iozzelli A et al (2002) Evaluation of Gd-enhancement in brain MR of multiple sclerosis: image subtraction with and without magnetization transfer. Eur Radiol 12:2077–2082

    PubMed  CAS  Google Scholar 

  10. Sardanelli F, Iozzelli A, Losacco C et al (2003) Three subsequent single doses of Gd-chelate in brain MR of multiple sclerosis. AJNR Am J Neuroradiol 24:658–662

    PubMed  Google Scholar 

  11. Delfaut EM, Beltran J, Johnson G et al (1999) Fat suppression in MR imaging: techniques and pitfalls. Radiographics 19:373–382

    PubMed  CAS  Google Scholar 

  12. Fujii Y, Konishi Y, Kuriyama M et al (1993) Lipoma on surface of centroparietal lobes. Pediatr Neurol 9:144–166

    Article  PubMed  CAS  Google Scholar 

  13. Dahlen RT, Johnson CE, Harnsberger HR et al (2002) CT and MR imaging characteristics of intravestibular lipoma. AJNR Am J Neuroradiol 23:1413–1417

    PubMed  Google Scholar 

  14. Sener RN (1995) Isolated choroid plexus lipomas. Comput Med Imaging Graph 19:423–426

    Article  PubMed  CAS  Google Scholar 

  15. Mirowitz SA, Apicella P, Reinus WR, Hammerman AM (1994) MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fatsuppressed T2-weighted, and STIR images. AJR Am J Roentgenol 162:215–221

    PubMed  CAS  Google Scholar 

  16. Seitz J, Held P, Strotzer M et al (2002) MR imaging of cranial nerve lesions using six different high-resolution T1- and T2(*)-weighted 3D and 2D sequences. Acta Radiol 43:349–353

    Article  PubMed  CAS  Google Scholar 

  17. Guy J, Mao J, Bidgood WD Jr, Mancuso A, Quisling RG (1992) Enhancement and demyelination of the intraorbital optic nerve. Fat suppression magnetic resonance imaging. Ophthalmology 99:713–719

    PubMed  CAS  Google Scholar 

  18. Sklar EM, Schatz NJ, Glaser JS et al (1996) MR of vasculitis-induced optic neuropathy. AJNR Am J Neuroradiol 17:121–128

    PubMed  CAS  Google Scholar 

  19. Jackson A, Sheppard S, Laitt RD et al (1998) Optic neuritis: MR imaging with combined fat- and water-suppression techniques. Radiology 206:57–63

    PubMed  CAS  Google Scholar 

  20. Okamoto K, Ito J, Ogawa R et al (1999) Bilateral optic neuritis in a child diagnosed with Gd-enhanced MR imaging using fat-suppression technique. Eur Radiol 9:731–733

    Article  PubMed  CAS  Google Scholar 

  21. Barkhof F (1996) Role of MR imaging in the diagnosis of MS. Ad MRI Contrast 4:31–38

    Google Scholar 

  22. Namer IJ, Yu O, Mauss Y, Dumitresco BE, Chambron J (1993) An evaluation of the significance of areas of intense signal in the MR brain images of patients with multiple sclerosis. Magn Reson Imaging 11:311–317

    Article  PubMed  CAS  Google Scholar 

  23. Hashemi RH, Bradley WG, Chen DY et al (1995) Suspected multiple sclerosis: MR imaging with a thin-section fast Flair pulse sequence. Radiology 196:505–510

    PubMed  CAS  Google Scholar 

  24. Filippi M, Yousry T, Baratti C et al (1996) Quantitative assessment of MRI lesion load in multiple sclerosis. A comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain 119:1349–1355

    Article  PubMed  Google Scholar 

  25. Truyen L, van Waesberghe JH, van Walderveen MA et al (1996) Accumulation of hypointense lesion (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47:1469–1476

    PubMed  CAS  Google Scholar 

  26. van Waesberghe JH, Kamphorst W, De Groot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol. 46:747–754

    Article  PubMed  Google Scholar 

  27. Van Waesberghe JH (1996) Magnetization transfer ratio and contrast in multiple sclerosis. Ad MRI contrast 4:54–60

    Google Scholar 

  28. Renzetti P, Parodi RC, Losacco C et al (1999) Brain magnetic resonance with magnetization transfer in multiple sclerosis. Lesion hyperintensity before and after intravenous gadolinium administration. Radiol Med 98:138–143

    CAS  PubMed  Google Scholar 

  29. Bastianello S, Gasperini C, Paolillo A et al (1998) Sensitivity of enhanced MR in multiple sclerosis: effects of contrast dose and magnetization transfer contrast. AJNR Am J Neuroradiol 19:1863–1867

    PubMed  CAS  Google Scholar 

  30. Filippi M, Rovaris M, Capra R et al (1998) A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis. Implications for phase II clinical trials. Brain 121:2011–2020

    Article  PubMed  Google Scholar 

  31. Rovaris M, Codella M, Moiola L et al (2002) Effect of glatiramer acetate on MS lesions enhancing at different gadolinium doses. Neurology 59:1429–1432

    PubMed  CAS  Google Scholar 

  32. Mancardi GL, Saccardi R, Filippi M et al (2001) Cell transplantation for multiple sclerosis. Autologous hematopoietic stem cell transplantation suppresses Gd-enhanced MRI activity in MS. Neurology 57:62–68

    PubMed  CAS  Google Scholar 

  33. Rovaris M, Filippi M (2000) Contrast enhancement and the acute lesion in multiple sclerosis. Neuroimaging Clin N Am 10:705–716

    PubMed  CAS  Google Scholar 

  34. Mao J, Yan H, Brey WW (1993) Fat tissue and fat suppression. Magn Reson Imaging 11:385–393

    Article  PubMed  CAS  Google Scholar 

  35. Jackson EF, Ginsberg LE, Schomer DF, Leeds NE (1997) A review of MRI pulse sequences and techniques in neuroimaging. Surg Neurol 47:185–199

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sardanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sardanelli, F., Schiavoni, S., Iozzelli, A. et al. The value of chemical fat-saturation pulse added to T1-weighted spin-echo sequence in evaluating gadolinium-enhancing brain lesions in multiple sclerosis. Radiol med 112, 1244–1251 (2007). https://doi.org/10.1007/s11547-007-0220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-007-0220-y

Key words

Parole chiave

Navigation