Skip to main content

Advertisement

Log in

Modeling Intercellular Transfer of Biomolecules Through Tunneling Nanotubes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell–cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Khalil, R., et al. (2009). Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell, 5(3), 298–309.

    Article  Google Scholar 

  • Agnati, L. F., et al. (2011). Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. J. Recept. Signal Transduct. Res., 31(5), 315–331.

    Article  Google Scholar 

  • Ahmed, K. A., & Xiang, J. (2011). Mechanisms of cellular communication through intercellular protein transfer. J. Cell. Mol. Med., 15(7), 1458–1473.

    Article  Google Scholar 

  • Al-Nedawi, K., et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol., 10(5), 619–624.

    Article  Google Scholar 

  • Ambudkar, S. V., Sauna, Z. E., Gottesman, M. M., & Szakacs, G. (2005). A novel way to spread drug resistance in tumor cells: functional intercellular transfer of P-glycoprotein (ABCB1). Trends Pharmacol. Sci., 26(8), 385–387.

    Article  Google Scholar 

  • Baba, E., et al. (2001). Functional CD4 T cells after intercellular molecular transfer of 0X40 ligand. J. Immunol., 167(2), 875–883.

    Google Scholar 

  • Behnke, B. J., Armstrong, R. B., & Delp, M. D. (2011). Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium. Am. J. Physiol., Regul. Integr. Comp. Physiol., 301(3), R783–790.

    Article  Google Scholar 

  • Bosenberg, M. W., & Massague, J. (1993). Juxtacrine cell signaling molecules. Curr. Opin. Cell Biol., 5(5), 832–838.

    Article  Google Scholar 

  • Bukoreshtliev, N. V., et al. (2009). Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett., 583(9), 1481–1488.

    Article  Google Scholar 

  • Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., & Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int., 78(9), 838–848.

    Article  Google Scholar 

  • Carlin, L. M., Eleme, K., McCann, F. E., & Davis, D. M. (2001). Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J. Exp. Med., 194(10), 1507–1517.

    Article  Google Scholar 

  • Davis, D. M. (2007). Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol., 7(3), 238–243.

    Article  Google Scholar 

  • Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W., & Geuze, H. J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci., 113(19), 3365–3374.

    Google Scholar 

  • Driesen, R. B., et al. (2005). Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts. Cardiovasc. Res., 68(1), 37–46.

    Article  Google Scholar 

  • Eugenina, E. A., Gaskilla, P. J., & Bermana, J. W. (2009). Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking. Cell. Immunol., 254(2), 142–148.

    Article  Google Scholar 

  • Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R., Tank, T. D., & Wieschaus, E. F. (2005). Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad. Sci. USA, 102(51), 18403–18407.

    Article  Google Scholar 

  • Groebe, K., Erz, S., & Mueller-Klieser, W. (1994). Glucose diffusion coefficients determined from concentration profiles in EMT6 tumor spheroids incubated in radioactively labeled L-glucose. Adv. Exp. Med. Biol., 361, 619–625.

    Article  Google Scholar 

  • Guescini, M., et al. (2012). Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. In Experimental cell research.

    Google Scholar 

  • Gurke, S., et al. (2008). Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell Res., 314(20), 3669–3683.

    Article  Google Scholar 

  • Levchenko, A., et al. (2005). Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc. Natl. Acad. Sci. USA, 102(6), 1933–1938.

    Article  Google Scholar 

  • Li, M., et al. (2010). Intercellular transfer of proteins as identified by stable isotope labeling of amino acids in cell culture. J. Biol. Chem., 285(9), 6285–6297.

    Article  Google Scholar 

  • Lichtenberger, B. M., et al. (2010). Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 140(2), 268–279.

    Article  Google Scholar 

  • Lou, E., et al. (2012). Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE, 7(3), e33093.

    Article  Google Scholar 

  • Luby-Phelps, K., Taylor, D. L., & Lanni, F. (1986). Probing the structure of cytoplasm. J. Cell Biol., 102(6), 2015–2022.

    Article  Google Scholar 

  • Mack, M., et al. (2000). Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat. Med., 6(7), 769–775.

    Article  Google Scholar 

  • Marzo, L., Gousset, K., & Zurzolo, C. (2012). Multifaceted roles of tunneling nanotubes in intercellular communication. Front. Physiol., 3, 72.

    Article  Google Scholar 

  • Nicholson, C., & Tao, L. (1993). Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J., 65(6), 2277–2290.

    Article  Google Scholar 

  • Niu, X., Gupta, K., Yang, J. T., Shamblott, M. J., & Levchenko, A. (2009). Physical transfer of membrane and cytoplasmic components as a general mechanism of cell–cell communication. J. Cell Sci., 122(5), 600–610.

    Article  Google Scholar 

  • Pap, E., Pallinger, E., Pasztoi, M., & Falus, A. (2009). Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflamm. Res., 58(1), 1–8.

    Article  Google Scholar 

  • Phillips, G. N. Jr. (1997). Structure and dynamics of green fluorescent protein. Curr. Opin. Struct. Biol., 7(6), 821–827.

    Article  Google Scholar 

  • Prochiantz, A. (2011). Homeoprotein intercellular transfer, the hidden face of cell-penetrating peptides. Methods Mol. Biol., 683, 249–257.

    Article  Google Scholar 

  • Qin, L., Bromberg-White, J. L., & Qian, C. N. (2012). Opportunities and challenges in tumor angiogenesis research: back and forth between bench and bed. Adv. Cancer Res., 113, 191–239.

    Article  Google Scholar 

  • Quah, B. J., et al. (2008). Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer. Proc. Natl. Acad. Sci. USA, 105(11), 4259–4264.

    Article  Google Scholar 

  • Rustom, A., Saffrich, R., Markovic, I., Walther, P., & Gerdes, H. H. (2004). Nanotubular highways for intercellular organelle transport. Science, 303(5660), 1007–1010.

    Article  Google Scholar 

  • Singh, A. B., & Harris, R. C. (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell. Signal., 17(10), 1183–1193.

    Article  Google Scholar 

  • Stine, M. J., et al. (2011). Integration of genotypic and phenotypic screening reveals molecular mediators of melanoma-stromal interaction. Cancer Res., 71(7), 2433–2444.

    Article  Google Scholar 

  • Twiss, J. L., & Fainzilber, M. (2009). Ribosomes in axons—scrounging from the neighbors? Trends Cell Biol., 19(5), 236–243.

    Article  Google Scholar 

  • Valadi, H., et al. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 9(6), 654–659.

    Article  Google Scholar 

  • Vikne, H., Gundersen, K., Liestol, K., Maelen, J., & Vollestad, N. (2012). Intermuscular relationship of human muscle fiber type proportions: slow leg muscles predict slow neck muscles. Muscle Nerve, 45(4), 527–535.

    Article  Google Scholar 

  • Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med., 17(11), 1359–1370.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Levchenko.

Additional information

Y. Suhail and Kshitiz contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhail, Y., Kshitiz, Lee, J. et al. Modeling Intercellular Transfer of Biomolecules Through Tunneling Nanotubes. Bull Math Biol 75, 1400–1416 (2013). https://doi.org/10.1007/s11538-013-9819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9819-4

Keywords

Navigation