Skip to main content

Advertisement

Log in

Simple Metaecoepidemic Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a simple predator-prey system with two possible habitats and where an epidemic spreads by contact among the prey, but it cannot affect the predators. Only the prey population can freely move from one environment to another. Several models are studied, for different assumptions on the structure of the demographic interactions and on the predators’ feeding. Some counterintuitive results are derived. The role the safety refuge may in some cases entail negative consequences for the whole ecosystem. Also, depending on the system formulation, coexistence of all the populations may not always be supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amori, G., Contoli, L., & Nappi, A. (2008). Fauna d’Italia (Italian Fauna) Mammalia III Erinaceomorpha, Soricomorpha, Lagomorpha, Rodentia, Calderini Bologna, Italy.

  • Arino, O., El Abdllaoui, A., Mikram, J., & Chattopadhyay, J. (2004). Infection on prey population may act as a biological control in ratio-dependent predator-prey model. Nonlinearity, 17, 1101–1116.

    Article  MATH  MathSciNet  Google Scholar 

  • Atsatt, P. R. (1981). Lycaenid butterflies and ants: selection for enemy-free space. Am. Nat., 118(5), 638–654.

    Article  Google Scholar 

  • Becklund, W. W., & Senger, C. M. (1967). Parasites of ovis canadiensis in Montana, with a checklist of the internal and external parasites of the Rocky Mountain bighorn sheep in North America. J. Parasitol., 53(1), 157–165.

    Article  Google Scholar 

  • Beltrami, E., & Carroll, T. O. (1994). Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol., 32, 857–863.

    Article  MATH  Google Scholar 

  • Black, H. L. (1974). A north temperate bat community: structure and prey populations. J. Mammal., 55, 138–157.

    Article  Google Scholar 

  • Boitani, L., S. Lovari, S., & Vigna Taglianti, A. (2003). Fauna d’Italia (Italian Fauna) Mammalia III Carnivora—Artiodactyla, Calderini, Bologna, Italy.

  • Brack, V. Jr., & Laval, R. K. (1985). Food habits of the Indiana bat in Missouri. J. Mammal., 66, 308–315.

    Article  Google Scholar 

  • Chattopadhyay, J., & Arino, O. (1999). A predator-prey model with disease in the prey. Nonlinear Anal., 36, 747–766.

    Article  MATH  MathSciNet  Google Scholar 

  • Chattopadhyay, J., Sarkar, R. R., & Ghosal, G. (2002). Removal of infected prey prevent limit cycle oscillations in an infected prey–predator system—a mathematical study. Ecol. Model., 156, 113–121.

    Article  Google Scholar 

  • Cowie, R. J., & Hinsley, S. A. (1988). Feeding ecology of great tits (Parus major) and Blue Tits (Parus caeruleus), breeding in suburban gardens. J. Anim. Ecol., 57, 611–626.

    Article  Google Scholar 

  • Cronin, J. T. (2003). Movement and spatial population structure of a prairie planthopper. Ecology, 84, 1179–1188.

    Article  Google Scholar 

  • Dewey, T., & Ballenger, L. (1999). Ovis canadensis (On-line), Animal Diversity Web, Accessed December 04, 2009 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ovis_canadensis.html.

  • Festa-Bianchet, M. (1999). Bighorn sheep. In D. E. Wilson, & S. Ruff (Eds.), The Smithsonian book of North American mammals (pp. 348–350). Washington: Smithsonian Institution Press.

    Google Scholar 

  • Freedman, H. I. (1990). A model of predator-prey dynamics as modified by the action of parasite. Math. Biosci., 99, 143–155.

    Article  MATH  MathSciNet  Google Scholar 

  • Gauld, I. D. (1988). Evolutionary patterns of host utilization by ichneumonoid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biol. J. Linn. Soc., 35, 351–377.

    Article  Google Scholar 

  • Gustafson, E. J., & Gardner, R. H. (1996). The effect of landscape heterogeneity on the probability of patch colonization. Ecology, 77, 94–107.

    Article  Google Scholar 

  • Gutiérrez, R. J., & Harrison, S. (1996). Applying metapopulation theory to spotted owl management: a history and critique. In D. R. McCollough (Ed.), Metapopulations and wildlife conservation (pp. 167–185). Washington: Island Press.

    Google Scholar 

  • Hadeler, K. P., & Freedman, H. I. (1989). Predator-prey populations with parasitic infection. J. Math. Biol., 27, 609–631.

    MATH  MathSciNet  Google Scholar 

  • Hanski, I. (1985). Single-species spatial dynamics may contribute to long-term rarity and commonness. Ecology, 66, 335–343.

    Article  Google Scholar 

  • Hanski, I., & Gilpin, M. (Eds.) (1997). Metapopulation biology: ecology, genetics and evolution. London: Academic Press.

    MATH  Google Scholar 

  • Hanski, I., Moilanen, A., Pakkala, T., & Kuussaari, M. (1996). Metapopulation persistence of an endangered butterfly: a test of the quantitative incidence function model. Conserv. Biol., 10, 578–590.

    Article  Google Scholar 

  • Harrison, S., & Taylor, A. (1997). Empirical evidence for metapopulation dynamics. In I. Hanski, & M. Gilpin (Eds.), Metapopulation biology: ecology, genetics and evolution (pp. 27–42). London: Academic Press.

    Google Scholar 

  • Hoberg, E. P., Miller, G. S., Wallner-Pendleton, E., & Hedstrom, O. R. (1989). Helminth parasites of northern spotted owls (Strix occidentalis caurina) from Oregon. J. Wildl. Dis., 25(2), 246–251.

    Google Scholar 

  • Holyoak, M. (2000). Effects of nutrient enrichment on predator-prey metapopulation dynamics. J. Anim. Ecol., 69, 985–997.

    Article  Google Scholar 

  • Inaba, H., & Nishiura, H. (2008). The basic reproduction number of an infectious disease in a stable population: the impact of population growth rate on the eradication threshold. Math. Model. Nat. Phenom., 3(7), 194–228.

    Article  MathSciNet  Google Scholar 

  • Kareiva, P. (1990). Population Dynamics in Spatially Complex Environments: theory and data. Philos. Trans. R. Soc. Lond. B, 330, 175–190.

    Article  Google Scholar 

  • Kerr, P., & McFadden, G. (2002). Immune responses to Myxoma Virus. Viral Immunol., 15(2), 229–246.

    Article  Google Scholar 

  • Kerr, P. J., Merchant, J. C., Silvers, L., Hood, G. M., & Robinson, A. J. (2003). Monitoring the spread of myxoma virus in rabbit Oryctolagus cuniculus populations on the southern tablelands of New South Wales, Australia. II. Selection of a strain of virus for release. Epidemiol. Infect., 130, 123–133.

    Article  Google Scholar 

  • Lei, G., & Hanski, I. (1997). Metapopulation structure of Cotesia melitaearum, a parasitoid of the butterfly Melitaea cinxia. Oikos, 78, 91–100.

    Article  Google Scholar 

  • Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am., 15, 237–240.

    Google Scholar 

  • Malchow, H., Petrovskii, S., & Venturino, E. (2008). Spatiotemporal patterns in ecology and epidemiology. Boca Raton: CRC.

    MATH  Google Scholar 

  • Merchant, J. C., Kerr, P. J., Simms, N. G., Hood, G. M., Pech, R. P., & Robinson, A. J. (2003). Monitoring the spread of myxoma virus in rabbit Oryctolagus cuniculus populations on the southern tablelands of New South Wales, Australia. III. Release, persistence and rate of spread of an identifiable strain of myxoma virus. Epidemiol. Infect., 130(1), 135–147.

    Article  Google Scholar 

  • Moilanen, A., & Hanski, I. (1995). Habitat destruction and competitive coexistence in a spatially realistic metapopulation model. J. Anim. Ecol., 64, 141–144.

    Article  Google Scholar 

  • Moilanen, A., Smith, A., & Hanski, I. (1998). Long-term dynamics in a metapopulation of the American pika. Am. Nat., 152, 530–542.

    Article  Google Scholar 

  • Rothman, L. D., & Myers, J. H. (1996). Debilitating effects of viral diseases on host lepidoptera. J. Inverteb. Pathol., 67, 1–10.

    Article  Google Scholar 

  • Scoble, M. J. (1992). The lepidoptera: form, function, and diversity. Oxford: Oxford University Press.

    Google Scholar 

  • Schooley, R. L., & Branch, L. C. (2007). Spatial heterogeneity in habitat quality and cross-scale interactions in metapopulations. Ecosystems, 10, 846–853.

    Article  Google Scholar 

  • Semeyn, E. (1999). Strix occidentalis (On-line), Animal Diversity Web. Accessed December 04, 2009 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Strix_occidentalis.html.

  • Tilman, D., & Kareiva, P. (Eds.) (1997). Spatial ecology. Princeton: Princeton University Press, USA.

    Google Scholar 

  • Venturino, E. (1994). The influence of diseases on Lotka Volterra systems. Rocky M. J. Math., 24, 381–402.

    Article  MATH  MathSciNet  Google Scholar 

  • Venturino, E. (1995). Epidemics in predator-prey models: disease in prey. In O. Arino, D. Axelrod, M. Kimmel, & M. Langlais (Eds.), Analysis of heterogeneity : Vol. 1. Mathematical population dynamics (pp. 381–393). Winnipeg: Wuerz.

    Google Scholar 

  • Venturino, E. (2001). The effects of diseases on competing species. Math. Biosci., 174, 111–131.

    Article  MATH  MathSciNet  Google Scholar 

  • Venturino, E. (2002). Epidemics in predator-prey models: disease in the predators. IMA J. Math. Appl. Med. Biol., 19, 185–205.

    Article  MATH  Google Scholar 

  • Venturino, E. (2007). How diseases affect symbiotic communities. Math. Biosci., 206, 11–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Wiens, J. A. (1996). Wildlife in patchy environments: metapopulations, mosaics, and management. In D. R. McCullough (Ed.), Metapopulations and wildlife conservation (pp. 53–84). Washington: Island Press.

    Google Scholar 

  • Wiens, J. A. (1997). Metapopulation dynamics and landscape ecology. In I. A. Hanski, & M. E. Gilpin (Eds.), Metapopulation biology (pp. 43–62). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Williams, R. T., Dunsmore, J. D., & Parer, I. (1972). Evidence for the existence of latent myxoma virus in rabbits (Oryctolagus cuniculus (L.)). Nature, 238, 99–101.

    Article  Google Scholar 

  • Wu, J. (1994). Modeling dynamics of patchy landscapes: linking metapopulation theory, landscape ecology and conservation biology. In Yearbook in systems ecology. Beijing: Chinese Academy of Sciences (English edition).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Venturino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venturino, E. Simple Metaecoepidemic Models. Bull Math Biol 73, 917–950 (2011). https://doi.org/10.1007/s11538-010-9542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9542-3

Keywords

Navigation