Skip to main content

Advertisement

Log in

Ecological Invasion, Roughened Fronts, and a Competitor’s Extreme Advance: Integrating Stochastic Spatial-Growth Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a “roughened” front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner’s relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front’s mean position. We find that a class of models with different assumptions about neighborhood interactions exhibits universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions. National Bureau of Standards, Washington.

    MATH  Google Scholar 

  • Allstadt, A., Caraco, T., Korniss, G., 2007. Ecological invasion: spatial clustering and the critical radius. Evol. Ecol. Res. 9, 1–20.

    Google Scholar 

  • Andow, D.A., Kareiva, P.M., Levin, S.A., Okubo, A., 1990. Spread of invading organisms. Landsc. Ecol. 4, 177–188.

    Google Scholar 

  • Antal, T., Droz, M., Györgyi, G., Rácz, Z., 2001. 1/f noise and extreme value statistics. Phys. Rev. Lett. 87, 240601. 4p.

    Google Scholar 

  • Antal, T., Droz, M., Györgyi, G., Rácz, Z., 2002. Roughness distribution of 1/f α signals. Phys. Rev. E 65, 046140. 12p.

    Google Scholar 

  • Antonovics, J., McKane, A.J., Newman, T.J., 2006. Spatiotemporal dynamics in marginal populations. Am. Nat. 167, 16–27.

    Google Scholar 

  • Aronson, D.G., Weinberger, H.F., 1978. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76.

    MATH  MathSciNet  Google Scholar 

  • Aylor, D.E., 2003. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology 84, 1989–1997.

    Google Scholar 

  • Barabási, A.-L., Stanley, H.E., 1995. Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • ben-Avraham, D., 1998. Fisher waves in the diffusion limited coalescence process. Phys. Lett. A 247, 53–58.

    Google Scholar 

  • Berman, S.M., 1964. Limit theorems for the maximum term in stationary sequences. Ann. Math. Stat. 35, 502–516.

    MATH  Google Scholar 

  • Bjornstad, O.N., Peltonin, M., Liebhold, A.M., Baltensweiler, W., 2002. Waves of larch budmoth outbreaks in the European Alps. Science 298, 1020–1023.

    Google Scholar 

  • Blythe, R.A., Evans, M.R., 2001. Slow crossover to Kardar–Parisi–Zhang scaling. Phys. Rev. E 64, 051101, 5 p.

    Google Scholar 

  • Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L., Brú, I., 2003. The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961.

    Google Scholar 

  • Cain, M.L., Pacala, S.W., Silander, J.A. Jr., Fortin, M.-J., 1995. Neighborhood models of clonal growth in the white clover Trifolium repens. Am. Nat. 145, 888–917.

    Google Scholar 

  • Cannas, S.A., Marco, D.E., Montemurro, M.A., 2006. Long range dispersal and spatial pattern formation in biological invasions. Math. Biosci. 203, 155–170.

    MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., 1991. The effect of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315–338.

    MATH  MathSciNet  Google Scholar 

  • Caraco, T., Glavanakov, S., Chen, G., Flaherty, J.E., Ohsumi, T.K., Szymanski, B.K., 2002. Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease. Am. Nat. 160, 348–359.

    Google Scholar 

  • Cardy, J., 1996. Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Clark, J.S., Fastie, C., Hurtt, G., Jackson, S.T., Johnson, C., King, G.A., Lewis, M., Lynch, J., Pacala, S., Prentice, C., Schupp, E.W., Webb, T., III, Wyckoff, P., 1998. Reid’s paradox of rapid plant migration. BioScience 48, 13–24.

    Google Scholar 

  • Clark, J.S., Lewis, M., Horvath, L., 2001. Invasion by extremes: population spread with variation in dispersal and reproduction. Am. Nat. 157, 537–554.

    Google Scholar 

  • Clark, J.S., Lewis, M., McLachlan, J.S., HilleRisLambers, J., 2003. Estimating population spread: what can we forecast and how well? Ecology 84, 1979–1988.

    Google Scholar 

  • Comins, H.N., Noble, I.R., 1985. Dispersal, variability, and transient niches: species coexistence in a uniformly variable environment. Am. Nat. 126, 706–723.

    Google Scholar 

  • Connolly, S.R., Muko, S., 2003. Space preemption, size-dependent competition and the coexistence of clonal growth forms. Ecology 84, 2979–2988.

    Google Scholar 

  • D’Antonio, C.M., 1993. Mechanisms controlling invasion of coastal plant communities by the alien succulent Carpobrotus edulis. Ecology 74, 83–95.

    Google Scholar 

  • DeAngelis, D.L., Gross, L.J. (Eds.), 1992. Individual-Based Models and Approaches in Ecology. Routledge, Chapman and Hall, New York.

    Google Scholar 

  • Doering, C.R., Mueller, C., Smereka, P., 2003. Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A 325, 243–259.

    MATH  MathSciNet  Google Scholar 

  • Doi, M., 1976. Stochastic theory of diffusion-controlled reaction. J. Phys. A 9, 1479–1495.

    Google Scholar 

  • Durrett, R., Levin, S.A., 1994a. Stochastic spatial models: a user’s guide to ecological applications. Philos. Trans. R. Soc. Lond. B 343, 329–350.

    Google Scholar 

  • Durrett, R., Levin, S.A., 1994b. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394.

    MATH  Google Scholar 

  • Dwyer, G., 1992. On the spatial spread of insect pathogens: theory and experiment. Ecology 73, 479–494.

    Google Scholar 

  • Dwyer, G., Elkinton, S., 1995. Host dispersal and the spatial spread of insect pathogens. Ecology 76, 1262–1275.

    Google Scholar 

  • Dwyer, G., Morris, W.F., 2006. Resource-dependent dispersal and the speed of biological invasions. Am. Nat. 167, 165–176.

    Google Scholar 

  • Eden, M., 1961. A two-dimensional growth process. In: Neyman, J. (Ed.), 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 4, pp. 223–239. University of California Press, Berkeley.

    Google Scholar 

  • Ellner, S.P., Sasaki, A., Haraguchi, Y., Matsuda, H., 1998. Speed of invasion in lattice population models: pair-edge approximation. J. Math. Biol. 36, 469–484.

    MATH  MathSciNet  Google Scholar 

  • Elton, C.S., 1958. The Ecology of Invasions by Animals and Plants. Methuen, London.

    Google Scholar 

  • Escudero, C., Buceta, J., de la Rubia, F.J., Lindenberg, K., 2004. Extinction in population dynamics. Phys. Rev. E 69, 021908, 9 p.

    MathSciNet  Google Scholar 

  • Family, F., Vicsek, T., 1985. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A 18, L75–L81.

    Google Scholar 

  • Ferrandino, F.J., 1996. Length scale of disease spread: fact or artifact of experimental geometry? Phytopathology 86, 806–811.

    Google Scholar 

  • Ferreira, S.C. Jr., Alves, S.G., 2006. Pitfalls in the determination of the universality class of radial clusters. J. Stat. Mech. 11, P11007, 11 p.

    Google Scholar 

  • Fisher, M.C., Koenig, G.L., White, T.J., Sans-Blas, G., Negroni, R., Alvarez, I.G., Wanke, B., Taylor, J.W., 2001. Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proc. Nat. Acad. Sci. USA 98, 4558–4562.

    Google Scholar 

  • Fisher, R.A., 1937. The wave of advance of advantageous genes. Ann. Eugen. Lond. 7, 355–369.

    Google Scholar 

  • Fisher, R.A., Tippett, L.H.C., 1928. The frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–191.

    MATH  Google Scholar 

  • Foltin, G., Oerding, K., Rácz, Z., Workman, R.L., Zia, R.K.P., 1994. Width distribution for random-walk interfaces. Phys. Rev. E 50, R639–R642.

    Google Scholar 

  • Frantzen, J., van den Bosch, F., 2000. Spread of organisms: can travelling and dispersive waves be distinguished? Basic Appl. Ecol. 1, 83–91.

    Google Scholar 

  • Galambos, J., 1987. The Asymptotic Theory of Extreme Order Statistics, 2nd edn. Krieger Publishing, Malabar.

    MATH  Google Scholar 

  • Galambos, J., Lechner, J., Simin, E. (Eds.), 1994. Extreme Value Theory and Applications. Kluwer, Dordrecht.

    MATH  Google Scholar 

  • Gandhi, A., Levin, S., Orszag, S., 1999. Nucleation and relaxation from meta-stability in spatial ecological models. J. Theor. Biol. 200, 121–146.

    Google Scholar 

  • Gardiner, C.W., 1985. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn. Springer, Berlin.

    Google Scholar 

  • Guclu, H., Korniss, G., 2004. Extreme fluctuations in small-worlds with relaxational dynamics. Phys. Rev. E 69, 065104(R), 4 p.

    Google Scholar 

  • Guclu, H., Korniss, G., Toroczkai, Z., 2007. Extreme fluctuations in noisy task-completion landscapes on scale-free networks. Chaos 17, 026104, 13 p.

    MathSciNet  Google Scholar 

  • Gumbel, E.J., 1958. Statistics of Extremes. Columbia University Press, New York.

    MATH  Google Scholar 

  • Halpin-Healy, T., Zhang, Y.-C., 1995. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254, 215–414.

    Google Scholar 

  • Harris, T.E., 1974. Contact interaction on a lattice. Ann. Probab. 2, 969–988.

    MATH  Google Scholar 

  • Hastings, A., Cuddington, K., Davies, K.F., Dugaw, C.J., Elmendorf, S., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B.A., Moore, K., Taylor, C., Thomson, D., 2005. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett. 8, 91–101.

    Google Scholar 

  • Hinrichsen, H., 2000. Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815–958.

    Google Scholar 

  • Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R., 1994. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29.

    Google Scholar 

  • Holway, D.A., 1998. Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115, 206–212.

    Google Scholar 

  • Hoopes, M.F., Hall, L.M., 2002. Edaphic factors and competition affect pattern formation and invasion in a California grassland. Ecol. Appl. 12, 24–39.

    Google Scholar 

  • Hosono, Y., 1998. The minimal speed of travelling fronts for a diffusive Lotka-Volterra competition model. Bull. Math. Biol. 60, 435–448.

    MATH  Google Scholar 

  • Jullien, R., Botet, R., 1985a. Surface thickness in the Eden model. Phys. Rev. Lett. 54, 2055.

    Google Scholar 

  • Jullien, R., Botet, R., 1985b. Scaling properties of the surface of the Eden model. J. Phys. A 18, 2279–2287.

    Google Scholar 

  • Kardar, M., Parisi, G., Zhang, Y.-C., 1986. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892.

    MATH  Google Scholar 

  • Kawasaki, K., Takasu, F., Caswell, H., Shigesada, N., 2006. How does stochasticity in colonization accelerate the speed of invasion in a cellular automaton model? Ecol. Res. 21, 334–345.

    Google Scholar 

  • Kertész, J., Wolf, D.E., 1988. Noise reduction in Eden models: II. Surface structure and intrinsic width. J. Phys. A, Math. Gen. 21, 747–761.

    Google Scholar 

  • Kolmogorov, A., Petrovsky, N., Pishkounov, N.S., 1937. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Mosc. Univ. Bull. Math. 1, 1–25.

    Google Scholar 

  • Korniss, G., Caraco, T., 2005. Spatial dynamics of invasion: the geometry of introduced species. J. Theor. Biol. 233, 137–150.

    MathSciNet  Google Scholar 

  • Korniss, G., Schmittmann, B., 1997. Structure factors and their distributions in driven two-species models. Phys. Rev. E 56, 4072–4084.

    Google Scholar 

  • Korniss, G., Toroczkai, Z., Novotny, M.A., Rikvold, P.A., 2000. From massively parallel algorithms and fluctuating time horizons to nonequilibrium surface growth. Phys. Rev. Lett. 84, 1351–1354.

    Google Scholar 

  • Korniss, G., Novotny, M.A., Guclu, H., Toroczkai, Z., Rikvold, P.A., 2003. Suppressing roughness of virtual times in parallel discrete-event simulations. Science 299, 677–679.

    Google Scholar 

  • Kot, M., Lewis, M.A., van den Driessche, P., 1996. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042.

    Google Scholar 

  • Krug, J., Meakin, P., 1990. Universal finite-size effects in the rate of growth processes. J. Phys. A 23, L987–L994.

    Google Scholar 

  • Lewis, M.A., 1997. Variability, patchiness, and jump dispersal in the spread of an invading population. In: Tilman, D., Kareiva, P. (Eds.), Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, pp. 46–69. Princeton University Press, Princeton.

    Google Scholar 

  • Lewis, M.A., 2000. Spread rate for a nonlinear stochastic invasion. J. Math. Biol. 41, 430–454.

    MATH  MathSciNet  Google Scholar 

  • Lewis, M.A., Li, B., Weinberger, H.F., 2002. Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233.

    MATH  MathSciNet  Google Scholar 

  • Lockwood, J.L., Hoopes, M.F., Marchetti, M., 2007. Invasion Ecology. Blackwell, Malden.

    Google Scholar 

  • Majumdar, S.N., Comtet, A., 2004. Exact maximal height distribution of fluctuation interfaces. Phys. Rev. Lett. 92, 225501, 4 p.

    Google Scholar 

  • Majumdar, S.N., Comtet, A., 2005. Airy distribution function: from the area under a Brownian excursion to the maximal height of fluctuating interfaces. J. Stat. Phys. 119, 776–826.

    MathSciNet  Google Scholar 

  • McKane, A.J., Newman, T.J., 2004. Stochastic models in population biology and their deterministic analogues. Phys. Rev. E 70, 041902, 19 p.

    MathSciNet  Google Scholar 

  • Minogue, K.P., Fry, W.E., 1983. Models for the spread of plant disease: some experimental results. Phytopathology 73, 1173–1176.

    Google Scholar 

  • Mollison, D., Levin, S.A., 1995. Spatial dynamics of parasitism. In: Grenfell, B.T., Dobson, A.P. (Eds.), Ecology of Infectious Diseases in Natural Populations, pp. 384–398. Cambridge University Press, Cambridge.

    Google Scholar 

  • Moro, E., 2001. Internal fluctuations effects on Fisher waves. Phys. Rev. Lett. 87, 238303, 4 p.

    Google Scholar 

  • Moro, E., 2003. Emergence of pulled fronts in fermionic microscopic particle models. Phys. Rev. E 68, 025102, 4 p.

    Google Scholar 

  • Murray, J.D., 2003. Mathematical Biology, vol. 2. Springer, New York.

    MATH  Google Scholar 

  • Nash, D.R., Agassiz, D.J.L., Godfray, H.C.J., Lawton, J.H., 1995. The pattern of spread of invading species: two leaf-mining moths colonizing Great Britain. J. Anim. Ecol. 64, 225–233.

    Google Scholar 

  • Neubert, M.G., Caswell, H., 2000. Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81, 1613–1628.

    Article  Google Scholar 

  • Oborny, B., Meszéna, G., Szabó, G., 2005. Dynamics of populations on the verge of extinction. Oikos 109, 291–296.

    Google Scholar 

  • O’Malley, L., Allstadt, A., Korniss, G., Caraco, T., 2005. Nucleation and global time scales in ecological invasion under preemptive competition. In: Stocks, N.G., Abbott, D., Morse, R.P. (Eds.), Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems III, pp. 117–124. SPIE, Pullman.

    Google Scholar 

  • O’Malley, L., Basham, J., Yasi, J.A., Korniss, G., Allstadt, A., Caraco, T., 2006a. Invasive advance of an advantageous mutation: nucleation theory. Theor. Popul. Biol. 70, 464–478.

    MATH  Google Scholar 

  • O’Malley, L., Kozma, B., Korniss, G., Rácz, Z., Caraco, T., 2006b. Fisher waves and front propagation in a two-species invasion model with preemptive competition. Phys. Rev. E 74, 041116, 7 p.

    Google Scholar 

  • O’Malley, L., Kozma, B., Korniss, G., Rácz, Z., Caraco, T., 2009. Fisher waves and the velocity of front propagation in a two-species invasion model with preemptive competition. In: Landau, D.P., Lewis, S.P., Schüttler, H.-B. (Eds.), Computer Simulation Studies in Condensed Matter Physics XIX, Springer Proceedings in Physics, vol. 123, pp. 73–78. Springer, Heidelberg.

    Google Scholar 

  • Parker, I.M., Reichard, S.H., 1998. Critical issues in invasion biology for conservation science. In: Fieldler, P.L., Kareiva, P.M. (Eds.), Conservation Biology, 2nd edn., pp. 283–305. Chapman and Hall, New York.

    Google Scholar 

  • Pechenik, L., Levine, H., 1999. Interfacial velocity corrections due to multiplicative noise. Phys. Rev. E 59, 3893–3900.

    Google Scholar 

  • Peliti, L., 1985. Path integral approach to birth-death processes on a lattice. J. Phys. (Paris) 46, 1469–1483.

    Google Scholar 

  • Pimentel, D., Lach, L., Zuniga, R., Morrison, D., 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50, 53–65.

    Google Scholar 

  • Plischke, M., Rácz, Z., 1985. Dynamic scaling and the surface structure of Eden clusters. Phys. Rev. A 32, 3825–3828.

    Google Scholar 

  • Plischke, M., Rácz, Z., Liu, D., 1987. Time-reversal invariance and universality of two-dimensional growth models. Phys. Rev. B 35, 3485–3495.

    Google Scholar 

  • Rácz, Z., Gálfi, L., 1988. Properties of the reaction front in an A+BC type reaction–diffusion process. Phys. Rev. A 38, 3151–3154.

    Google Scholar 

  • Raychaudhuri, S., Cranston, M., Przybyla, C., Shapir, Y., 2001. Maximal height scaling of kinetically growing surfaces. Phys. Rev. Lett. 87, 136101, 4 p.

    Google Scholar 

  • Rosenzweig, M.L., 2001. The four questions: what does the introduction of exotic species do to diversity? Evol. Ecol. Res. 3, 361–371.

    Google Scholar 

  • Ruesink, J.L., Parker, I.M., Groom, M.J., Kareiva, P.M., 1995. Reducing the risks of nonindigenous introductions: guilty until proven innoent. BioScience 45, 465–477.

    Google Scholar 

  • Ruiz, G.M., Rawlings, T.K., Dobbs, F.C., Huq, A., Colwell, R., 2000. Global spread of microorganisms by ships. Nature 408, 49.

    Google Scholar 

  • Schehr, G., Majumdar, S.N., 2006. Universal asymptotic statistics of a maximal relative height in one-dimensional solid-on-solid models. Phys. Rev. E 73, 056103, 10 p.

    Google Scholar 

  • Schmittmann, B., Zia, R.K.P., 1995. Statistical Mechanics of Driven Diffusive Systems. Phase Transitions and Critical Phenomena, vol. 17. Academic Press, New York.

    Google Scholar 

  • Schwinning, S., Parsons, A.J., 1996. A spatially explicit population model of stoloniferous N-fixing legumes in mixed pasture with grass. J. Ecol. 84, 815–826.

    Google Scholar 

  • Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press, Oxford.

    Google Scholar 

  • Shigesada, N., Kawasaki, K., Takeda, Y., 1995. Modeling stratified diffusion in biological invasions. Am. Nat. 146, 229–251.

    Google Scholar 

  • Silvertown, J., Lines, C.E.M., Dale, M.P., 1994. Spatial competition between grasses—rates of mutual invasion between four species and the interaction with grazing. J. Ecol. 82, 31–38.

    Google Scholar 

  • Simberloff, D., Relva, M.A., Nuñez, M., 2002. Gringos en el bosque: introduced tree invasion in a native Nothofagus/Austrocedrus forest. Biol. Invasions 4, 35–53.

    Google Scholar 

  • Snyder, R.E., 2003. How demographic stochasticity can slow biological invasions. Ecology 84, 1333–1339.

    Google Scholar 

  • Tainaka, K., Kushida, M., Itoh, Y., Yoshimura, J., 2004. Interspecific segregation in a lattice ecosystem with intraspecific competition. J. Phys. Soc. Jpn. 73, 2914–2915.

    Google Scholar 

  • Thomson, N.A., Ellner, S.P., 2003. Pair-edge approximation for heterogeneous lattice population models. Theor. Popul. Biol. 64, 270–280.

    Article  Google Scholar 

  • van Baalen, M., Rand, D.A., 1998. The unit of selection in viscous populations and the evolution of altruism. J. Theor. Biol. 193, 631–648.

    Google Scholar 

  • van den Bosch, F., Hengeveld, R., Metz, J.A.J., 1992. Analysing the velocity of animal range expansion. J. Biogeogr. 19, 135–150.

    Google Scholar 

  • van Kampen, N.G., 1976. The expansion of the master equation. Adv. Chem. Phys. 34, 245–309.

    Google Scholar 

  • van Kampen, N.G., 1981. Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam.

    MATH  Google Scholar 

  • van Saarloos, W., 2003. Front propagation into unstable states. Phys. Rep. 386, 29–222.

    MATH  Google Scholar 

  • Weinberger, H.F., Lewis, M.A., Li, B.T., 2002. Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218.

    MATH  MathSciNet  Google Scholar 

  • Wilson, W., 1998. Resolving discrepancies between deterministic population models and individual-based simulations. Am. Nat. 151, 116–134.

    Google Scholar 

  • Wilson, W., de Roos, A.M., McCauley, E., 1993. Spatial instabilities within the diffusive Lotka–Volterra system: individual-based simulation results. Theor. Popul. Biol. 43, 91–127.

    MATH  Google Scholar 

  • Yasi, J., Korniss, G., Caraco, T., 2006. Invasive allele spread under preemptive competition. In: Landau, D.P., Lewis, S.P., Schüttler, H.-B. (Eds.), Computer Simulation Studies in Condensed Matter Physics XVIII, Springer Proceedings in Physics, vol. 105, pp. 165–169. Springer, Heidelberg.

    Google Scholar 

  • Yurkonis, K.A., Meiners, S.J., 2004. Invasion impacts local species turnover in a successional system. Ecol. Lett. 4, 764–769.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Caraco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Malley, L., Korniss, G. & Caraco, T. Ecological Invasion, Roughened Fronts, and a Competitor’s Extreme Advance: Integrating Stochastic Spatial-Growth Models. Bull. Math. Biol. 71, 1160–1188 (2009). https://doi.org/10.1007/s11538-009-9398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9398-6

Keywords

Navigation