Skip to main content
Log in

Explicit Separation of Growth and Motility in a New Tumor Cord Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate a new model of tumor growth in which cell motility is considered an explicitly separate process from growth. Bulk tumor expansion is modeled by individual cell motility in a density-dependent diffusion process. This model is implemented in the context of an in vivo system, the tumor cord. We investigate numerically microscale density distributions of different cell classes and macroscale whole tumor growth rates as functions of the strength of transitions between classes. Our results indicate that the total tumor growth follows a classical von Bertalanffy growth profile, as many in vivo tumors are observed to do. This provides a quick validation for the model hypotheses. The microscale and macroscale properties are both sensitive to fluctuations in the transition parameters, and grossly adopt one of two phenotypic profiles based on their parameter regime. We analyze these profiles and use the observations to classify parameter regimes by their phenotypes. This classification yields a novel hypothesis for the early evolutionary selection of the metastatic phenotype by selecting against less motile cells which grow to higher densities and may therefore induce local collapse of the vascular network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A.R., Chaplain, M.A., 1998. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–99.

    Article  MATH  Google Scholar 

  • Araujo, R.P., McElwain, D.L., 2004. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66(5), 1039–091.

    Article  MathSciNet  Google Scholar 

  • Bertuzzi, A., Fasano, A., Gandolfi, A., Marangi, D., 2002. Cell kinetics in tumour cords studied by a model with variable cell cycle length. Math. Biosci. 177–78, 103–25.

    Article  MathSciNet  Google Scholar 

  • Bertuzzi, A., D’Onofrio, A., Fasano, A., Gandolfi, A., 2003. Regression and regrowth of tumour cords following single-dose anticancer treatment. Bull. Math. Biol. 65(5), 903–31.

    Article  Google Scholar 

  • Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C., 2007. Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords. J. Theor. Biol. 244(3), 388–99.

    Article  MathSciNet  Google Scholar 

  • Boucher, Y., Jain, R.K., 1992. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52(18), 5110–114.

    Google Scholar 

  • Chaplain, M.A., McDougall, S.R., Anderson, A.R., 2006. Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–57.

    Article  Google Scholar 

  • Crespi, B., Summers, K., 2005. Evolutionary biology of cancer. Trends Ecol. Evol. (Pers. Ed.) 20(10), 545–52.

    Article  Google Scholar 

  • Desai, S.B., Libutti, S.K., 1999. Tumor angiogenesis and endothelial cell modulatory factors. J. Immunother. (Hagerstown, MD: 1997) 22(3), 186–11.

    Google Scholar 

  • Desmouliere, A., Guyot, C., Gabbiani, G., 2004. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int. J. Dev. Biol. 48(5–6), 509–17.

    Article  Google Scholar 

  • Lide, D.R. (ed.), 2007. The CRC Handbook of Chemistry and Physics, Internet Version. 87th edn.

  • Gammack, D., Byrne, H.M., Lewis, C.E., 2001. Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia. Bull. Math. Biol. 63(1), 135–66.

    Article  Google Scholar 

  • Gatenby, R.A., Maini, P.K., 2003. Mathematical oncology: cancer summed up. Nature 421(6921), 321.

    Article  Google Scholar 

  • Gatenby, R.A., Maini, P.K., Gawlinsky, E.T., 2002. Analysis of tumor as an inverse problem provides a novel theoretical framework for understanding tumor biology and therapy. Appl. Math. Lett. 15, 339–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Greenspan, H.P., 1972. Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 52, 317–40.

    Google Scholar 

  • Greenspan, H.P., 1976. On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56(1), 229–42.

    Article  MathSciNet  Google Scholar 

  • Hanahan, D., Weinberg, R.A., 2000. The hallmarks of cancer. Cell 100(1), 57–0.

    Article  Google Scholar 

  • Helmlinger, G., Yuan, F., Dellian, M., Jain, R.K., 1997. Interstitial ph and po2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3(2), 177–82.

    Article  Google Scholar 

  • Hoelzinger, D.B., Mariani, L., Weis, J., Woyke, T., Berens, T.J., McDonough, W.S., Sloan, A., Coons, S.W., Berens, M.E., 2005. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia (New York, NY) 7(1), 7–6.

    Google Scholar 

  • Ilic, B., Czaplewski, D., Zalalutdinov, M., Craighead, H.D., Neuzil, P., Campagnolo, C., Batt, C., 2001. Single cell detection with micromechanical oscillators. J. Vac. Sci. Technol. B 19(6), 2825.

    Google Scholar 

  • Kurisu, S., Suetsugu, S., Yamazaki, D., Yamaguchi, H., Takenawa, T., 2005. Rac-wave2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene 24(8), 1309–319.

    Article  Google Scholar 

  • Menon, C., Polin, G.M., Prabakaran, I., Hsi, A., Cheung, C., Culver, J.P., Pingpank, J.F., Sehgal, C.S., Yodh, A.G., Buerk, D.G., Fraker, D.L., 2003. An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model. Cancer Res. 63(21), 7232–240.

    Google Scholar 

  • Nagy, J.D., 2004. Competition and natural selection in a mathematical model of cancer. Bull. Math. Biol. 66(4), 663–87.

    Article  MathSciNet  Google Scholar 

  • Okunieff, P., Fenton, B., Chen, Y., 2005. Past, present, and future of oxygen in cancer research. Adv. Exp. Med. Biol. 566, 213–22.

    Article  Google Scholar 

  • Olea, N., Villalobos, M., Nunez, M.I., Elvira, J., Ruiz de Almodovar, J.M., Pedraza, V., 1994. Evaluation of the growth rate of mcf-7 breast cancer multicellular spheroids using three mathematical models. Cell Prolif. 27(4), 213–23.

    Article  Google Scholar 

  • Pries, A.R., Reglin, B., Secomb, T.W., 2005. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46(4), 725–31.

    Article  Google Scholar 

  • Rygaard, K., Spang-Thomsen, M., 1997. Quantitation and Gompertzian analysis of tumor growth. Breast Cancer Res. Treat. 46(2–3), 303–12.

    Article  Google Scholar 

  • Scalerandi, M., Capogrosso Sansone, B., Benati, C., Condat, C.A., 2002. Competition effects in the dynamics of tumor cords. Phys. Rev. E 65(5), 051918.

    Google Scholar 

  • Steel, G.G., 1977. Growth Kinetics of Tumors, Clarendon Press, Oxford.

    Google Scholar 

  • Swanson, K.R., Alvord, E.C. Jr., Murray, J.D., 2000. A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif. 33(5), 317–29.

    Article  Google Scholar 

  • Thompson, K.E., Royds, J.A., 1999. Hypoxia and reoxygenation: A pressure for mutant p53 cell selection and tumour progression. Bull. Math. Biol. 61(4), 759–78.

    Article  Google Scholar 

  • Verheul, H.M., Pinedo, H.M., 2003. Vascular endothelial growth factor and its inhibitors. Drugs Today (Barc., Spain: 1998) 39(Suppl. C), 81–3.

    Google Scholar 

  • Yamazaki, D., Kurisu, S., Takenawa, T., 2005. Regulation of cancer cell motility through actin reorganization. Cancer Sci. 96(7), 379–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thalhauser, C.J., Sankar, T., Preul, M.C. et al. Explicit Separation of Growth and Motility in a New Tumor Cord Model. Bull. Math. Biol. 71, 585–601 (2009). https://doi.org/10.1007/s11538-008-9372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9372-8

Keywords

Navigation