Skip to main content
Log in

Local Connectivity of Neutral Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper studies local connectivity of neutral networks of RNA secondary and pseudoknot structures. A neutral network denotes the set of RNA sequences that fold into a particular structure. It is called locally connected, if in the limit of long sequences, the distance of any two of its sequences scales with their distance in the n-cube. One main result of this paper is that is the threshold probability for local connectivity for neutral networks, considered as random subgraphs of n-cubes. Furthermore, we analyze local connectivity for finite sequence length and different alphabets. We show that it is closely related to the existence of specific paths within the neutral network. We put our theoretical results into context with folding algorithms into minimum-free energy RNA secondary and pseudoknot structures. Finally, we relate our structural findings with dynamics by discussing the role of local connectivity in the context of neutral evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akutsu, T., 2000. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104, 45–62.

    Article  MATH  MathSciNet  Google Scholar 

  • Balister, P.N., Bollobás, B., Frieze, A.M., 2000. The first passage time diameter of the cube.

  • Batey, R.T., Rambo, R.P., Doudna, J.A., 1999. Tertiary motifs in RNA structure and folding. Angew. Chem. Int. Ed. 38, 2326–2343.

    Article  Google Scholar 

  • Chen, W.Y.C., Qin, J., Reidys, C.M., 2008. Crossings and nestings of tangled-diagrams. Electron. J. Comb. 15, 86.

    MathSciNet  Google Scholar 

  • Derrida, B., Peliti, L., 1999. Evolution in a flat fitness landscape. Bull. Math. Biol. 53, 355–382.

    Google Scholar 

  • Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P., 2000. RNA folding at elementary step resolution. RNA 6, 325–338.

    Article  Google Scholar 

  • Goebel, U., 2000. Neutral networks of minimum free energy structures. PhD Thesis, University of Vienna.

  • Goebel, U., Forst, C.V., 2000. RNA Pathfinder–global properties of neutral networks. Z. Phys. Chem. 216, 175–192.

    Google Scholar 

  • Grüner, W., Giegerich, R., Strothmann, D., Reidys, C.M., Weber, J., Hofacker, I.L., Stadler, P.F., Schuster, P., 1996a. Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral networks. Chem. Mon. 127, 355–374.

    Article  Google Scholar 

  • Grüner, W., Giegerich, R., Strothmann, D., Reidys, C.M., Weber, J., Hofacker, I.L., Stadler, P.F., Schuster, P., 1996b. Analysis of RNA sequence structure maps by exhaustive enumeration II. Structures of neutral networks and shape space covering. Chem. Mon. 127, 375–389.

    Article  Google Scholar 

  • Haslinger, C., Stadler, P.F., 1999. RNA structures with pseudo-knots. Bull. Math. Biol. 61, 437–467.

    Article  Google Scholar 

  • Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P., 1994. Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167–188.

    Article  Google Scholar 

  • Hofacker, I.L., Schuster, P., Stadler, P.F., 1998. Combinatorics of RNA secondary structures. Discrete Appl. Math. 88, 207–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Howell, J.A., Smith, T.F., Waterman, M.S., 1980. Computation of generating functions for biological molecules. SIAM J. Appl. Math. 39, 119–133.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, W.D., Reidys, C.M., 2008. Statistics of canonical RNA pseudoknot structures. J. Theor. Biol. doi:10.1016/j.jtbi.2008.04.002.

    Google Scholar 

  • Huang, W.D., Peng, W.D., Reidys, C.M., 2008. Folding RNA pseudoknot structures, in preparation.

  • Janson, S., 1990. Poisson approximation for large deviations. Random Struct. Algorithms 1, 221–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, E.Y., Reidys, C.M., 2008a. Asymptotic enumeration of RNA structures with pseudoknots. Bull. Math. Biol. 70, 951–970.

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, E.Y., Reidys, C.M., 2008a. Central and local limit theorems for RNA structures. J. Theor. Biol. 250, 547–559.

    Article  Google Scholar 

  • Jin, E.Y., Reidys, C.M., 2008c, Combinatorial design of pseudoknot RNA. Adv. Appl. Math., in press.

  • Jin, E.Y., Qin, J., Reidys, C.M., 2008. Combinatorics of RNA structures with pseudoknots. Bull. Math. Biol. 70, 45–47

    Article  MATH  MathSciNet  Google Scholar 

  • Kimura, M., 1968. Evolutionary rate at the molecular level. Nature 217, 624–626.

    Article  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Konings, D.A.M., Gutell, R.R., 1995. A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. RNA 1, 559–574.

    Google Scholar 

  • Loria, A., Pan, T., 1996. Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2, 551–563.

    Google Scholar 

  • Lyngso, R., Pedersen, C., 1996. Pseudoknots in RNA secondary structures. In: Physics of Biological Systems: From Molecules to Species. Springer, Berlin.

    Google Scholar 

  • Science, 2005. Mapping RNA Form and Function. Science 309(2) (5740).

  • Penner, R.C., Waterman, M.S., 1993. Spaces of RNA secondary structures. Adv. Math. 101, 31–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Reidys, C.M., 1997. Random induced subgraphs of generalized n-cubes. Adv. Appl. Math. 19, 360–377.

    Article  MATH  MathSciNet  Google Scholar 

  • Reidys, C.M., 2002. Distance in random induced subgraphs of generalized n-cubes. Comb. Probab. Comput. 11, 599–605.

    Article  MATH  MathSciNet  Google Scholar 

  • Reidys, C.M., 2008. Large components in random induced subgraphs of n-cubes, Discrete Math., accepted, arXiv:0704.2868.

  • Reidys, C.M., Stadler, P.F., Schuster, P.K., 1997. Generic properties of combinatory maps and neutral networks of RNA secondary structures. Bull. Math. Biol. 59(2), 339–397.

    Article  MATH  Google Scholar 

  • Rivas, E., Eddy, S., 1999. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285, 2053–2068.

    Article  Google Scholar 

  • Rivas, E., Eddy, S.R., 2000. The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 16(4), 334–340.

    Article  Google Scholar 

  • Schultes, E.A., Bartels, P.B., 2000. One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289, 448–452.

    Article  Google Scholar 

  • Schuster, P., 2002. A testable genotype-phenotype map: Modeling evolution of RNA molecules. In: Laessig, M., Valeriani, A. (Eds.), Biological Evolution and Statistical Physics, pp. 56–83. Springer, New York.

    Google Scholar 

  • Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L., 1994. From sequences to shapes and back: A case study in RNA secondary structures. Proc. Biol. Sci. 255(1344), 279–284.

    Article  Google Scholar 

  • Searls, D.B., 2002. The language of genes. Nature 420, 211–217.

    Article  Google Scholar 

  • Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T., 1999. Tree adjoining grammars for RNA structure prediction. Theor. Comput. Sci. 210, 277–303.

    Article  MATH  MathSciNet  Google Scholar 

  • Waterman, M.S., 1978. Secondary structure of single - stranded nucleic. acids. Adv. Math. I (suppl.) 1, 167–212.

    MathSciNet  Google Scholar 

  • Waterman, M.S., 1979. Combinatorics of RNA hairpins and cloverleafs. Stud. Appl. Math. 60, 91–96.

    MathSciNet  Google Scholar 

  • Waterman, M.S., Schmitt, W.R., 1994. Linear trees and RNA secondary structure. Discrete Appl. Math. 51, 317–323.

    Article  MATH  MathSciNet  Google Scholar 

  • Westhof, E., Jaeger, L., 1992. RNA pseudoknots. Curr. Opin. Struct. Biol. 2, 327–333.

    Article  Google Scholar 

  • Wong, R., Wyman, M., 1974. The method of Darboux. J. Approx. Theory 10, 159–171.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Reidys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reidys, C.M. Local Connectivity of Neutral Networks. Bull. Math. Biol. 71, 265–290 (2009). https://doi.org/10.1007/s11538-008-9356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9356-8

Keywords

Navigation