Skip to main content
Log in

Multiscale Modeling of Fluid Transport in Tumors

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model for fluid flow through the leaky neovasculature and porous interstitium of a solid tumor is developed. A network of isolated capillaries is analyzed in the limit of small capillary radius, and analytical expressions for the hydraulic conductivities and fractional leakage coefficients derived. This model is then homogenized to give a continuum description in terms of the vascular density. The resulting equations comprise a double porous medium with coupled Darcy flow through the interstitium and vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baish, J.W., Netti, P.A., Jain, R.K., 1997. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc. Res. 53, 128–41.

    Article  Google Scholar 

  • Baxter, L.T., Jain, R.K., 1989. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 37, 77–04.

    Article  Google Scholar 

  • Fait, E., Malkusch, W., Gnoth, S., Dimitropoulou, C., Gaumann, A., Kirkpatrick, C.J., Junginger, T., Konerding, M.A., 1998. Microvascular patterns of the human large intestine: Morphometric studies of vascular parameters in corrosion casts. Scanning Microsc. 12, 641–51.

    Google Scholar 

  • Fukumura, D., Yuan, F., Monsky, W.L., Chen, Y., Jain, R.K., 1997. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am. J. Path. 151, 679–88.

    Google Scholar 

  • Guyton, A.C., Granger, H.J., Taylor, A.E., 1971. Interstitial fluid pressure. Physiol. Rev. 51, 527–63.

    Google Scholar 

  • Hashizume, H., Baluk, P., Morikawa, S., McLean, J.W., Thurston, G., Roberge, S., Jain, R.K., McDonald, D.M., 2000. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–380.

    Google Scholar 

  • He, Y., Shirazaki, M., Liu, H., Himeno, R., Sun, Z., 2005. A numerical coupling model to analyze the blood flow, temperature, and oxygen transport in human breast tumor under laser irradiation. Comput. Biol. Med. 36, 1336–350.

    Article  Google Scholar 

  • Hinch, E.J., 1991. Perturbation Methods. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Ilmas, D.E., Gillette, E.L., 1974. Morphometric analyses of the microvasculature of tumors during growth and after x-irradiation. Cancer 33, 103–10.

    Article  Google Scholar 

  • Jain, R.K., 1987a. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6, 559–93.

    Article  Google Scholar 

  • Jain, R.K., 1987b. Transport of molecules in the tumor interstitium: A review. Cancer Res. 47, 3039–051.

    Google Scholar 

  • Jain, R.K., Tong, R.T., Munn, L.L., 2007. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res. 67, 2729–735.

    Article  Google Scholar 

  • Kirkpatrick, J.P., Brizel, D.M., Dewhirst, M.W., 2003. A mathematical model of tumor oxygen and glucose mass transport and metabolism with complex reaction kinetics. Radiat. Res. 159, 336–44.

    Article  Google Scholar 

  • Konerding, M., Fait, E., Gaumann, A., 2001. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br. J. Cancer 84, 1352–362.

    Article  Google Scholar 

  • Less, J., 1991. Microvascular architecture in a mammary carcinoma: Branching patterns and vessel dimensions. Cancer Res. 51, 265–73.

    Google Scholar 

  • Leunig, M., 1992. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52, 6553–560.

    Google Scholar 

  • Netti, P.A., Roberge, S., Boucher, Y., Baxter, L.T., Jain, R.K., 1996. Effect of transvascular fluid exchange on pressure-flow relationship in tumours: A proposed mechanism for tumor blood flow heterogeneity. Microvasc. Res. 52, 27–6.

    Article  Google Scholar 

  • Pozrikidis, C., Farrow, D.A., 2003. A model of fluid flow in solid tumours. Ann. Biomed. Eng. 31, 181–94.

    Article  Google Scholar 

  • Pullan, A.J., Smith, N.P., Hunter, P.J., 2002. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62, 990–018.

    Article  MATH  MathSciNet  Google Scholar 

  • Rand, P.W., Lacombe, E., Hunt, H.E., Austin, W.H., 1964. Viscosity of normal human blood under normothermic and hypothermic conditions. J. Appl. Physiol. 19, 117–22.

    Google Scholar 

  • Rippe, B., Kamiya, A., Folkow, B., 1978. Simultaneous measurements of capillary diffusion and filtration exchange during shifts in filtration-absorption and at graded alterations in the capillary permeability surface area products (PS). Acta Physiol. Scand. 104, 318–36.

    Article  Google Scholar 

  • Sevick, E.M., 1991. Measurement of capillary filtration coefficient in a solid tumor. Cancer Res. 51, 1352–355.

    Google Scholar 

  • Sevick, E.M., Jain, R.K., 1989a. Geometric resistance to blood flow in solid tumors perfused ex vivo: Effect of hematocrit on intratumor blood viscosity. Cancer Res. 49, 3513–519.

    Google Scholar 

  • Sevick, E.M., Jain, R.K., 1989b. Geometric resistance to blood flow in solid tumours perfused ex vivo: Effects of tumor size and perfusion pressure. Cancer Res. 49, 3506–512.

    Google Scholar 

  • Swabb, E.A., Wei, J., Gullino, P., 1974. Diffusion and convection in normal and neoplastic tissues. Cancer Res. 34, 2814–822.

    Google Scholar 

  • Willemse, F., Nap, M., deBruijn, H.W.A., Hollema, H., 1997. Quantification of vascular density and of lumen and vessel morphology in endometrial carcinoma—Evaluation of their relation to serum levels of tissue polypeptide-specific antigen and CA-125. Anal. Quant. Cytol. Histol. 19, 1–7.

    Google Scholar 

  • Zhang, X.-Y., Lick, J., Dewhirst, M., Yuan, F., 2000. Interstitial hydraulic conductivity in a fibrosarcoma. Am. J. Physiol. 279, H2726–H2734.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jonathan Chapman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, S.J., Shipley, R.J. & Jawad, R. Multiscale Modeling of Fluid Transport in Tumors. Bull. Math. Biol. 70, 2334–2357 (2008). https://doi.org/10.1007/s11538-008-9349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9349-7

Keywords

Navigation