Skip to main content
Log in

A Stochastic Spatial Dynamical Model for Aedes Aegypti

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a stochastic spatial model for Aedes aegypti populations based on the life cycle of the mosquito and its dispersal. Our validation corresponds to a monitoring study performed in Buenos Aires. Lacking information with regard to the number of breeding sites per block, the corresponding parameter (BS) was adjusted to the data. The model is able to produce numerical data in very good agreement with field results during most of the year, the exception being the fall season. Possible causes of the disagreement are discussed. We analyzed the mosquito dispersal as an advantageous strategy of persistence in the city and simulated the dispersal of females from a source to the surroundings along a 3-year period observing that several processes occur simultaneously: local extinctions, recolonization processes (resulting from flight and the oviposition performed by flyers), and colonization processes resulting from the persistence of eggs during the winter season. In view of this process, we suggest that eradication campaigns in temperate climates should be performed during the winter time for higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, H., Britton, T., 2000. Stochastic Epidemic Models and Their Statistical Analysis. Lecture Notes in Statistics, vol. 151. Springer, Berlin.

    MATH  Google Scholar 

  • Arrivillaga, J., Barrera, R., 2004. Food as a limiting factor for aedes aegypti in water-storage containers. J. Vector Ecol. 29, 11–0.

    Google Scholar 

  • Bar-Zeev, M., 1957. The effect of density on the larvae of a mosquito and its influence on fecundity. Bull. Res. Council Israel B 6, 220–28.

    Google Scholar 

  • Bar-Zeev, M., 1958. The effect of temperature on the growth rate and survival of the immature stages of aedes aegypti. Bull. Entomol. Res. 49, 157–63.

    Article  Google Scholar 

  • Boyce, R., 1911. Yellow Fever and Its Prevention. E.P. Dutton and Co., New York.

    Google Scholar 

  • Bugher, J.C., Taylor, M., 1949. Radiophosphorus and radiostrontium in mosquitoes. Preliminary report. Science 110, 146–47.

    Article  Google Scholar 

  • Calder, L., Laird, M., 1994. Mosquito travellers, arbovirus vectors and the used tyre trade. Travel. Med. Int. 12, 3–2.

    Google Scholar 

  • Carbajo, A.E., Schweigmann, N., Curto, S.I., de Garín, A., Bejarán, R., 2001. Dengue transmission risk maps of Argentina. Trop. Med. Int. Health 6(3), 170–83.

    Article  Google Scholar 

  • Carbajo, A.E., Gomez, S.M., Curto, S.I., Schweigmann, N., 2004. Variación espacio temporal del riesgo de transmisión de dengue en la ciudad de Buenos Aires. Medicina 64, 231–34.

    Google Scholar 

  • Carbajo, A.E., Curto, S.I., Schweigmann, N., 2006. Spatial distribution pattern of oviposition in the mosquito aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector. Med. Vet. Entomol. 20, 209–18.

    Article  Google Scholar 

  • Chadee, D.D., 1997. Effects of forced egg-retention on the oviposition patterns of female aedes aegypti (diptera:culicidae). Bull. Entomol. Res. 87, 649–51.

    Article  Google Scholar 

  • Christophers, R., 1960. Aedes aegypti (L.), the Yellow Fever Mosquito. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • de Garín, A.B., Bejarán, R.A., Carbajo, A.E., de Casas, S.C., Schweigmann, N.J., 2000. Atmospheric control of aedes aegypti populations in Buenos Aires (Argentina) and its variability. Int. J. Biometerol. 44, 148–56.

    Article  Google Scholar 

  • Dunn, L.H., 1927. Observations on the oviposition of aedes aegypti linn., in relation to distance from habitations. Bull. Ent. Res. 18, 145–48.

    Article  Google Scholar 

  • Durrett, R., 1999. Stochastic spatial models. SIAM Rev. 41(4), 677–18.

    Article  MATH  MathSciNet  Google Scholar 

  • Dye, C., 1982. Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference. Ecol. Entomol. 7, 39–6.

    Article  Google Scholar 

  • Edman, J.D., Scott, T.W., Costero, A., Morrison, A.C., Harrington, L.C., Clark, G.G., 1998. Aedes aegypti (diptera culicidae) movement influenced by availability of oviposition sites. J. Med. Entomol. 35(4), 578–83.

    Google Scholar 

  • Ethier, S.N., Kurtz, T.G., 1986. Markov Processes. Wiley, New York.

    Book  MATH  Google Scholar 

  • Fay, R.W., 1964. The biology and bionomics of aedes aegypti in the laboratory. Mosq. News. 24, 300–08.

    Google Scholar 

  • Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., 1993. Dynamics life table model for aedes aegypti: Analysis of the literature and model development. J. Med. Entomol. 30, 1003–018.

    Google Scholar 

  • FUNCEI, 1998. Dengue enfermedad emergente. Fund. Estud. Infectol. 1(1), 1–6, http://www.funcei.org.ar.

    Google Scholar 

  • FUNCEI, 1999a. Dengue enfermedad emergente. Fund. Estud. Infectol. 2(1), 1–12, http://www.funcei.org.ar.

    Google Scholar 

  • FUNCEI, 1999b. Dengue enfermedad emergente. Fund. Estud. Infectol. 2(2), 1–8, http://www.funcei.org.ar.

    Google Scholar 

  • Getis, A., Morrison, A.C., Gray, K., Scott, T.W., 2003. Characteristics of the spatial pattern of the dengue vector, aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 69(5), 494–05.

    Google Scholar 

  • Gleiser, R.M., Urrutia, J., Gorla, D.E., 2000. Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions. Entomol. Exp. Appl. 95, 135–40.

    Article  Google Scholar 

  • Harrington, L.C., Scott, T.W., Lerdthusnee, K., Coleman, R.C., Costero, A., Clark, G.G., Jones, J.J., Kitthawee, S., Kittayapong, P., Sithiprasasna, R., Edman, J.D., 2005. Dispersal of the dengue vector aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72(2), 209–20.

    Google Scholar 

  • Honório, N.A., da Costa Silva, W., Leite, P.J., Gonçalvez, J.M., Lounibos, L.P., de Oliveira, R.L., 2003. Dispersal of aedes aegipty and aedes albopictus (dipetera culicidae) in an urban endemic dengue area in the state of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–98.

    Article  Google Scholar 

  • Horsfall, W.R., 1955. Mosquitoes: Their Bionomics and Relation to Disease. Ronald, New York.

    Google Scholar 

  • Király, A., Jánosi, I.M., 2002. Stochastic modelling of daily temperature fluctuations. Phys. Rev. E 65, 051102.

    Article  Google Scholar 

  • Kurtz, T.G., 1970. Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7, 49–8.

    Article  MATH  MathSciNet  Google Scholar 

  • Kurtz, T.G., 1971. Limit theorems for sequences of jump processes approximating ordinary differential equations. J. Appl. Probab. 8, 344–56.

    Article  MATH  MathSciNet  Google Scholar 

  • Laird, M., 1989. Vector-borne diseases introduced into new areas due to human movement: a historical perspective. In: Service, M.W. (Ed.), Demography and Vector-Borne Diseases, pp. 17–3. CRC, Boca Raton

    Google Scholar 

  • Livdahl, T.P., Koenekoop, R.K., Futterweit, S.G., 1984. The complex hatching response of aedes eggs to larval density. Ecol. Entomol. 9, 437–42.

    Article  Google Scholar 

  • McDonald, P.T., 1977. Population characteristics of domestic aedes aegypti (diptera: Culicidae) in villages on the Kenya coast. ii. dispersal within and between villages. J. Med. Entomol. 14(1), 49–3.

    Google Scholar 

  • Ministerio de Asistencia Social y Salud Publica, A., 1964. Campaña de erradicacion del Aedes aegypti en la República Argentina. Informe final. Buenos Aires.

  • Morlan, H.B., Hayes, R.O., 1958. Urban dispersal and activity of aedes aegypti. Mosq. News 18, 137–44.

    Google Scholar 

  • Muir, L.E., Kay, B.H., 1998. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am. J. Trop. Med. Hyg. 58, 277–82.

    Google Scholar 

  • Nayar, J.K., Sauerman, D.M., 1975. The effects of nutrition on survival and fecundity in Florida mosquitoes. Part 3. utilization of blood and sugar for fecundity. J. Med. Entomol. 12, 220–25.

    Google Scholar 

  • Ordoñez-Gonzalez, J.G., Mercado-Hernandez, R., Flores-Suarez, A.E., Fernandez-Salas, I., 2001. The use of sticky ovitraps to estimate dispersal of aedes aegypti in northeastern Mexico. J. Am. Mosq. Control Assoc., Inc. 17(2), 93–7.

    Google Scholar 

  • Otero, M., Solari, H., Schweigmann, N., 2006. A stochastic population dynamic model for aedes aegypti: formulation and application to a city with temperate climate. Bull. Math. Biol. 68, 1945–974.

    Article  MathSciNet  Google Scholar 

  • Reiter, P., Amador, M.A., Anderson, R.A., Clark, G.G., 1995. Short report: dispersal of aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am. J. Trop. Med. Hyg. 52, 177–79.

    Google Scholar 

  • Rodhain, F., Rosen, L., 1997. Mosquito vectors and dengue virus-vector relationships. In: Gubler, D.J., Kuno, G. (Eds.), Dengue and Dengue Hemorragic Fever, pp. 61–8. CAB International, New York.

    Google Scholar 

  • Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., 1990. Temperature-dependent development and survival rates of culex quinquefasciatus and aedes aegypti (diptera: Culicidae). J. Med. Entomol. 27, 892–98.

    Google Scholar 

  • Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719–31.

    Article  Google Scholar 

  • Schweigmann, N., Boffi, R., 1998. Aedes aegypti y aedes albopictus: Situación entomológica en la región. In: Temas de Zoonosis y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis y Primer Cong. Argent. y Lationoamer. de Enf. Emerg. y Asociación Argentina de Zoonosis, pp. 259–63, Buenos Aires.

  • Schweigmann, N., Orellano, P., Kuruc, J., Vera, M.T., Vezzani, D., Méndez, A., 2002. Distribución y abundancia de aedes aegypti (diptera: Culicidae) en la ciudad de Buenos Aires. In: Salomón, D.S. (Ed.), Actualizaciones en Artropodología Sanitaria Argentina, pp. 155–60.

  • Service, M.W., 1997. Mosquito (diptera: Culicidae) dispersal-the long and short of it. J. Med. Entomol. 34, 579–88.

    Google Scholar 

  • Shannon, R.C., Burke, A.W., Davis, N.C., 1930. Observations on released stegomyia aegypti (l.) with special reference to dispersion. Am. J. Trop. Med. 10, 145–50.

    Google Scholar 

  • Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–70.

    Article  Google Scholar 

  • Solari, H.G., Natiello, M.A., 2003. Stochastic population dynamics: the Poisson approximation. Phys. Rev. E 67, 031918.

    Article  Google Scholar 

  • Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., 1972. Studies on the life budget of aedes aegypti in Wat Samphaya Bangkok Thailand. Bull. W.H.O. 46, 211–26.

    Google Scholar 

  • Subra, R., Mouchet, J., 1984. The regulation of preimaginal populations of aedes aegypti (l.) (diptera: Culicidae) on the Kenya coast. ii. food as a main regulatory factor. Ann. Trop. Med. Parasitol. 78, 63–0.

    Google Scholar 

  • Takahashi, L.T., Maidana, N.A., Ferreira, W.C. Jr., Pulino, P., Yang, H.M., 2005. Mathematical models for the aedes aegypti dispersal dynamics: Travelling waves by wing and wind. Bull. Math. Biol. 67, 509–28.

    Article  MathSciNet  Google Scholar 

  • Trpis, M., 1972. Dry season survival of aedes aegypti eggs in various breeding sites in the Dar es Salaam area, Tanzania. Bull. W.H.O. 47, 433–37.

    Google Scholar 

  • Trpis, M., Häusermann, W., 1986. Dispersal and other population parameters of aedes aegypti in an African village and their possible significance in epidemiology of vector-borne-diseases. Am. J. Trop. Med. Hyg. 35, 1263–279.

    Google Scholar 

  • Tsuda, Y., Takagi, M., Wang, S., Wang, Z., Tang, L., 2001. Movement of aedes aegypti (diptera: Culicidae) released in a small isolated village on Hainan island, China. J. Med. Entomol. 38(1), 93–8.

    Article  Google Scholar 

  • US Department of Commerce, 2006. National climatic data center, http://www.ncdc.noaa.gov/oa/ncdc.html.

  • Vezzani, C., Velázquez, S.T., Schweigmann, N., 2004. Seasonal pattern of abundance of aedes aegypti (diptera: Culicidae) in Buenos Aires city, Argentina. Mem. Inst. Oswaldo Cruz 99, 351–56.

    Article  Google Scholar 

  • WHO, 1998. Dengue hemorrhagic fever. Diagnosis, treatment, prevention and control. World Health Organization, Ginebra, Suiza.

  • WHO, 2002. Dengue and Dengue hemorrhagic fever. World Health Organization, Ginebra, Suiza.

  • Wiseman, R.H., Symes, L.B., McMahon, J.C., Teesdale, C., 1939. Report on a malaria survey of Mombasa. Nairobi Government Printer, Nairobi.

  • Wolfinsohn, M., Galun, R., 1953. A method for determining the flight range of aedes aegypti (linn.). Bull. Res. Council Israel 2, 433–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Otero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otero, M., Schweigmann, N. & Solari, H.G. A Stochastic Spatial Dynamical Model for Aedes Aegypti . Bull. Math. Biol. 70, 1297–1325 (2008). https://doi.org/10.1007/s11538-008-9300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9300-y

Keywords

Navigation