Skip to main content
Log in

Regularity and Synchrony in Motor Proteins

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate the origin of the regularity and synchrony which have been observed in numerical experiments of two realistic models of molecular motors, namely Fisher–Kolomeisky’s model of myosin V for vesicle transport in cells and Duke’s model of myosin II for sarcomere shortening in muscle contraction. We show that there is a generic organizing principle behind the emergence of regular gait for a motor pulling a large cargo and synchrony of action of many motors pulling a single cargo. These results are surprising in that the models used are inherently stochastic, and yet they display regular behaviors in the parameter range relevant to experiments. Our results also show that these behaviors are not tied to the particular models used in these experiments, but rather are generic to a wide class of motor protein models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2002. Molecular Biology of the Cell, 4th edn. Taylor and Francis, London.

    Google Scholar 

  • Astumian, R., Derenyi, I., 1998. Fluctuations driven transport and model of molecular motors and pumps. Eur. Biol. J. 27, 474–489.

    Google Scholar 

  • Badoual, M., Julicher, F., Prost, J., 2002. Bidirectional cooperative motion of molecular motors. Proc. Natl. Acad. Sci. USA 99(10), 6696–6701.

    Article  Google Scholar 

  • Berglund, N., Gentz, B., 2006. Noise-induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach. Springer, London.

    MATH  Google Scholar 

  • DeVille, R., Muratov, C., Vanden-Eijnden, E., 2005. Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Phys. Rev. E (3) 72(3), 031105.

    Article  MathSciNet  Google Scholar 

  • DeVille, R., Muratov, C., Vanden-Eijnden, E., 2006. Non-meanfield deterministic limits in chemical reaction kinetics far from equilibrium. J. Chem. Phys. 124(23), 231102.

    Article  Google Scholar 

  • DeVille, R., Vanden-Eijnden, E., 2007. Self-induced stochastic resonance for Brownian ratchets. Commun. Math. Sci. 5(2), 431–466.

    MathSciNet  MATH  Google Scholar 

  • Duke, T., 1999. Molecular model of muscle contraction. Proc. Natl. Acad. Sci. 96, 2770–2775.

    Article  Google Scholar 

  • Elston, T., Peskin, C., 2000. The role of protein flexibility in molecular motor function: coupled diffusion in a titled periodic potential. SIAM J. Appl. Math. 60(3), 842–867.

    Article  MATH  MathSciNet  Google Scholar 

  • Endow, S., Higuchi, H., 2000. A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406(6798), 913–916.

    Article  Google Scholar 

  • Holmes, K., 1997. The swinging lever-arm hypothesis of muscle contraction. Curr. Biol. 7(2), R112–R118.

    Article  Google Scholar 

  • Fisher, M., Kolomeisky, A., 1999. The force exerted by a molecular motor. Proc. Natl. Acad. Sci. 96, 6597–6601.

    Article  Google Scholar 

  • Fisher, M., Kolomeisky, A., 2001. Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. 98(14), 7748–7753.

    Article  Google Scholar 

  • Freidlin, M., Wentzell, A., 1998. Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Freidlin, M., 2001a. On stochastic perturbations of dynamical systems with fast and slow components. Stoch. Dyn. 1(2), 261–281.

    Article  MATH  MathSciNet  Google Scholar 

  • Freidlin, M., 2001b. On stable oscillations and equilibriums induced by small noise. J. Stat. Phys. 103(1–2), 283–300.

    Article  MATH  MathSciNet  Google Scholar 

  • Kolomeisky, A., Fisher, M., 2003. A simple kinetic model describes the processivity of myosin-V. Biophys. J. 84, 1642–1650.

    Article  Google Scholar 

  • Mehta, A.D., Rock, R.S., Rief, M., Spudich, J.A., Mooseker, M.S., Cheney, R.E., 1999. Myosin-V is a processive actin-based motor. Nature 400(6744), 590–593.

    Article  Google Scholar 

  • Muratov, C., Vanden-Eijnden, E., E, W., 2005. Self-induced stochastic resonance in excitable systems. Physica D 210(3–4), 227–240.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C., Oster, G., 1995. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202–210.

    Google Scholar 

  • Rice, S., Lin, A.W., Safer, D., Hart, C., Naber, N., Carragher, B., Cain, S., Pechatnikova, E., Wilson-Kubalek, E., Whittaker, M., Pate, E., Cooke, R., Taylor, E., Milligan, R., Vale, R., 1999. A structural change in the kinesin motor protein that drives motility. Nature 402(6763), 778–784.

    Article  Google Scholar 

  • Rief, M., Rock, R., Mehta, A., Mooseker, M., Cheney, R., Spudich, J., 2000. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. 97(17), 9482–9486.

    Article  Google Scholar 

  • Sakamoto, T., Yildez, A., Selvin, P.R., Sellers, J.R., 2005. Step-size is determined by neck length in myosin V. Biochemistry 44(49), 16203–16210.

    Article  Google Scholar 

  • Schilstra, M., Martin, S., 2006. Viscous load imposes a regular gait on myosin-V. J. R. Soc. Interface 3, 153–165.

    Article  Google Scholar 

  • Sellers, J., 2000. Myosins: a diverse superfamily. Biochem. Biophys. Acta 1496(1), 3–22.

    Article  MathSciNet  Google Scholar 

  • Shwartz, A., Weiss, A., 1995. Large Deviations for Performance Analysis. Chapman & Hall, London.

    MATH  Google Scholar 

  • Vale, R., Milligan, R., 2000. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95.

    Article  Google Scholar 

  • Yildiz, A., Selvin, P.R., 2005. Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc. Chem. Res. 38(7), 574–582.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Lee DeVille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeVille, R.E.L., Vanden-Eijnden, E. Regularity and Synchrony in Motor Proteins. Bull. Math. Biol. 70, 484–516 (2008). https://doi.org/10.1007/s11538-007-9266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9266-1

Keywords

Navigation