Skip to main content
Log in

Evolution of Defence Portfolios in Exploiter–Victim Systems

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Some organisms maintain a battery of defensive strategies against their exploiters (predators, parasites or parasitoids), while others fail to employ a defence that seems obvious. In this paper, we shall investigate the circumstances under which defence strategies might be expected to evolve. Brood parasites and their hosts provide our main motivation, and we shall discuss why the reed warbler Acrocephalus scirpaceus has evolved an egg-rejection but not a chick-rejection strategy as a defence against the common (Eurasian) cuckoo Cuculus canorus, while the superb fairy-wren Malurus cyaneus has evolved a chick-rejection but not an egg-rejection strategy as a defence against Horsfield's bronze-cuckoo Chrysococcyx basalis. We suggest that the answers lie in strategy-blocking, where one strategy (the blocking strategy) prevents the appearance of another (the blocked strategy) that would be adaptive in its absence. This may be common in exploiter–victim systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akino, T., Knapp, J., Thomas, J., Elmes, G., 1999. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 266, 1419–1426.

    Article  Google Scholar 

  • Brooker, L., Brooker, M., 1998. Why do splendid fairy-wrens always accept cuckoo eggs? Behav. Ecol. 9, 420–424.

    Article  Google Scholar 

  • Brooker, L., Brooker, M., Brooker, A., 1990. An alternative population-genetic model for the evolution of egg mimesis and egg crypsis in cuckoos. J. Theor. Biol. 146, 123–143.

    Google Scholar 

  • Brooker, M., Brooker, L., 1989. The comparative breeding behaviour of two sympatric cuckoos, Horsfield's bronze-cuckoo Chrysococcus basalis and the shining bronze-cuckoo C. lucidus, in Western Australia: A new model for the evolution of egg morphology and host specificity in avian brood parasitism. Ibis 131, 528–547.

    Google Scholar 

  • Cramp, S., 1988. Handbook of the Birds of Europe, the Middle East and North Africa, vol. 5. Oxford University Press, New York.

    Google Scholar 

  • Cramp, S., Brooks, D., 1992. Handbook of the Birds of Europe, the Middle East and North Africa, vol. 6. Oxford University Press, New York.

    Google Scholar 

  • Davies, N., 2000. Cuckoos, Cowbirds and Other Cheats. T. & A.D. Poyser, London.

    Google Scholar 

  • Dawkins, R., 1982. The Extended Phenotype: The Long Reach of the Gene. Oxford University Press.

  • Dawkins, R., Krebs, J., 1979. Arms races between and within species. Proc. R. Soc. Lond. B 205, 489–511.

    Article  Google Scholar 

  • Ehrlich, P., Raven, P., 1964. Butterflies and plants: A study in coevolution. Science 18, 586–608.

    Google Scholar 

  • Emlen, J., 1984. Population Biology: The Coevolution of Population Dynamics and Behaviour. Macmillan, New York.

    Google Scholar 

  • Flor, H., 1955. Host–parasite interaction in flax rust—its genetic and other implications. Phytopathology 45, 680–685.

    Google Scholar 

  • Flor, H., 1956. The complementary genic systems in flax and flax rust. Adv. Genet. 8, 29–54.

    Article  Google Scholar 

  • Futuyma, D., 1983. Evolutionary interactions among herbivorous insects and plants. In: Futuyma, D., Slatkin, M. (Eds.), Coevolution. Sinauer, Sunderland, MA, pp. 207–231.

    Google Scholar 

  • Gallun, R., 1977. The genetic basis of hessian fly epidemics. Ann. N. Y. Acad. Sci. 287, 223–229.

    Article  Google Scholar 

  • Gilbert, L., 1971. Butterfly-plant coevolution: Has Passiflora adenopoda won the selectional race with heliconiine butterflies? Science 172, 585–586.

    Article  Google Scholar 

  • Gilbert, L., 1983. Coevolution and mimicry. In: Futuyma, D., Slatkin, M. (Eds.), Coevolution. Sinauer, Sunderland, MA, pp. 263–281.

    Google Scholar 

  • Grim, T., Kleven, O., Mikulica, O., 2003. Nestling recognition without discrimination: A possible defence mechanism for hosts towards cuckoo parasitism? Proc. R. Soc. Lond. B Suppl. 270, S73–S75.

    Article  Google Scholar 

  • Hatchett, J., Gallun, R., 1970. Genetics of the ability of the hessian fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann. Entomol. Soc. Am. 63, 1400–1407.

    Google Scholar 

  • Holmes, J., 1983. Evolutionary relationships between parasitic helminths and their hosts. In: Futuyma, D., Slatkin, M. (Eds.), Coevolution. Sinauer, Sunderland, MA, pp. 161–185.

    Google Scholar 

  • Holt, R., 1977. Predation apparent competition and the structure of prey communities. Theor. Popul. Biol. 12, 197–229.

    Article  MathSciNet  Google Scholar 

  • Janzen, D., 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution 20, 249–275.

    Article  Google Scholar 

  • Janzen, D., 1969. Seed-eaters versus seed size, number, toxicity and dispersal. Evolution 23, 1–27.

    Article  Google Scholar 

  • Kelly, C., 1987. A model to explore the rate of spread of mimicry and rejection in hypothetical populations of cuckoos and their hosts. J. Theor. Biol. 125, 283–299.

    Article  Google Scholar 

  • Kraaijeveld, A., Godfray, H., 1997. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278–280.

    Article  Google Scholar 

  • Langmore, N., Hunt, S., Kilner, R., 2003. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157–160.

    Article  Google Scholar 

  • Levin, B., Lenski, R., 1983. Coevolution in bacteria and their viruses and plasmids. In: Futuyma, D., Slatkin, M. (Eds.), Coevolution. Sinauer, Sunderland, MA, pp. 99–127.

    Google Scholar 

  • Levin, D., 1976. Alkaloid-bearing plants: An ecogeographic perspective. Am. Nat. 110, 157–182.

    Article  Google Scholar 

  • Lotem, A., 1993. Learning to recognize nestlings is maladaptive for cuckoo Cuculus canorus hosts. Nature 362, 743–745.

    Article  Google Scholar 

  • Marchalonis, J., 1977. Immunity in Evolution. Harvard University Press.

  • May, R., Robinson, S., 1985. The population dynamics of avian brood parasitism. Am. Nat. 126, 475–494.

    Article  Google Scholar 

  • Nicholson, A., Bailey, V., 1935. The balance of animal populations, I. Proc. Zool. Soc. Lond. 1, 551–598.

    Google Scholar 

  • Planqué, R., Britton, N., Franks, N., Peletier, M., 2002. The adaptiveness of defence strategies against cuckoo parasitism. Bull. Math. Biol. 64, 1045–1068.

    Article  Google Scholar 

  • Pointrineau, K., Brown, S., Hochberg, M., 2003. Defence against multiple enemies. J. Evol. Biol. 16, 1319–1327.

    Article  Google Scholar 

  • Price, P., Bouton, C., Gross, P., McPheron, B., Thompson, J., Weiss, A., 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Ann. Rev. Ecol. Syst. 11, 41–65.

    Article  Google Scholar 

  • Rehr, S., Feeny, P., Janzen, D., 1973. Chemical defense in Central American non-ant acacias. J. Anim. Ecol. 42, 405–416.

    Article  Google Scholar 

  • Roitt, I., Delves, P., 2001. Essential Immunology, 10th edition. Blackwell Science, UK.

    Google Scholar 

  • Rothstein, S., 1975. Evolutionary rates and host defences against avian brood parasitism. Am. Nat. 109, 161–176.

    Article  Google Scholar 

  • Sabelis, M., van Baalen, M., Pels, B., Egas, M., Janssen, A., 2002. Evolution of exploitation and defense in tritrophic interactions. In: Dieckmann, U., Metz, J., Sabelis, M., Sigmund, K. (Eds.), Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, pp. 297–321.

  • Salt, G., 1970. The Cellular Defence Reactions of Insects. Cambridge University Press.

  • Sasaki, A., Godfray, H., 1999. A model for the coevolution of resistance and virulence in coupled host–parasitoid interactions. Proc. R. Soc. Lond. B 266, 455–463.

    Article  Google Scholar 

  • Sih, A., Englund, G., Wooster, D., 1998. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355.

    Article  Google Scholar 

  • Silvertown, J., Lovett Doust, J., 1993. Introduction to Plant Population Biology. Blackwell Science, Oxford.

  • Skellam, J., 1951. Random dispersal in theoretical populations. Biometrika 38, 196–218.

    MATH  MathSciNet  Google Scholar 

  • Smith, N., 1968. The advantage of being parasitised. Nature 219, 690–694.

    Article  Google Scholar 

  • Smith, N., 1979. Alternate responses by hosts to parasites which may be helpful or harmful. In: Nickol, B. (Ed.), Host–Parasite Interfaces. Academic Press, New York, pp. 7–15.

    Google Scholar 

  • Takasu, F., 1998. Why do all host species not show defense against avian brood parasitism: Evolutionary lag or equilibrium? Am. Nat. 151, 193–205.

    Article  Google Scholar 

  • Takasu, F., Kawasaki, K., Nakamura, H., Cohen, J., Shigesada, N., 1993. Modeling the population dynamics of a cuckoo–host association and the evolution of host defences. Am. Nat. 142, 819–839.

    Article  Google Scholar 

  • Thomas, J., Knapp, J., Akino, T., Gerty, S., Wakamura, S., Simcox, D., Wardlaw, J., Elmes, G., 2002. Insect communication: Parasitoid secretions provoke ant warfare—subterfuge used by a rare wasp may be the key to an alternative type of pest control. Nature 417, 505–506.

    Article  Google Scholar 

  • Turlings, T., Loughrin, J., McCall, P., Röse, U., Lewis, W., 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U. S. A. 92, 4169–4174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Britton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britton, N.F., Planqué, R. & Franks, N.R. Evolution of Defence Portfolios in Exploiter–Victim Systems. Bull. Math. Biol. 69, 957–988 (2007). https://doi.org/10.1007/s11538-006-9178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9178-5

Keywords

Navigation