Skip to main content
Log in

Simulations of Chemotaxis and Random Motility in 2D Random Porous Domains

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We discuss a generic computational model of eukariotic chemotaxis in 2D random porous domains. The model couples the fully time-dependent finite-difference solution of a reaction–diffusion equation for the concentration field of a chemoattractant to biased random walks representing individual chemotactic cells. We focus in particular on the influence of consumption of chemoattractant by the boundaries of obstacles with irregular shapes which are distributed randomly in the domain on the chemotactic response of the cells. Cells are stimulated to traverse a field of obstacles by a line source of chemoattractant. We find that the reactivity of the obstacle boundaries with respect to the chemoattractant strongly determines the transit time of cells through two primary mechanisms. The channeling effect arises because cells are effectively repelled from surfaces which consume chemoattractant, and opposing surfaces therefore act to keep cells in the middle of channels. This reduces traversal times relative to the case with unreactive boundaries, provided that the appropriate Péclet number relating the strength of reactivity to diffusion in governing chemoattractant transport is neither too low nor too high. The dead-zone effect arises due to a realistic threshold on the chemotactic response, which at steady state results in portions of the domain having no detectable gradient. Of these two, the channeling effect is responsible for 90% of the sensitivity of transit times to boundary reactivity. Based on these results, we speculate that it may be possible to tune the rates of cellular penetration into porous domains by engineering the reactivity of the internal surfaces to cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, W., 1980. Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, A.R.A., Chaplain, M.A.J., 1998. A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl. Math. Lett. 11, 109–114.

    Article  MATH  Google Scholar 

  • Chaplain, M.A.J., 2000. Mathematical modeling of angiogenesis. J. Neuro-Oncol. 50, 37–51.

    Article  Google Scholar 

  • Dunn, G.A., Brown, A.F., 1987. A unified approach to analyzing cell motility. J. Cell Sci. Suppl. 8, 81–102.

    Google Scholar 

  • Dziubla, T.D., 2002. Macroporous hydrogels as vascularizable soft tissue-implant interfaces: Material characterization, in vitro evaluation, computer simulations and applications in implantable drug delivery devices. Ph.D. thesis, Drexel University.

  • Ferrara, N., 1999. Vascular endothelial growth factor: molecular and biological aspects. Curr. Top. Microbiol. Immunol. 237, 1–30.

    Google Scholar 

  • Francis, K., Palsson, B.O., 1997. Effective intercellular communication distances are determined by the relative time constant for cyto/chemokine secretion and diffusion. Proc. Nat. Acad. Sci. USA 94, 12258–12262.

    Article  Google Scholar 

  • Friedl, P., Zanker, K.S., Bröcker, E.B., 1998. Cell migration strategies in 3-d extracellular matrix: Differences in morphology, cell matrix interactions and integrin function. Micro. Res. Tech. 43, 369–378.

    Article  Google Scholar 

  • Golden, M.A., Hanson, S.R., Kirkman, T.R., Schneider, P.A., Clowes, A.W., 1990. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J. Vasc. Surg. 11, 838–844.

    Article  Google Scholar 

  • Gordon, P., 1965. Nonsymmetric difference equations. J. Soc. Ind. Appl. Math. 13, 667.

    Google Scholar 

  • Gourlay, A.R., 1970. Hopscoth: A fast second-order partial differential equation solver. J. Inst. Math. Appl. 6, 375–390.

    Article  MATH  MathSciNet  Google Scholar 

  • Ito, H., Koefoed, M., Tiyapatanaputi, P., Gromov, K., Goater, J.J., Carmouche, J., Zhang, X., Rubery, P., Rabinowitz, J., Samulski, R.J., Nakamura, T., Soballe, K., O'Keefe, R.J., Boyce, B.F., Schwarz, E.M., 2005. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat. Med. 11, 291–297.

    Article  Google Scholar 

  • Jabbarzadeh, E., Abrams, C.F., 2005. Chemotaxis and random motility in unsteady chemoattractant fields: A computational study. J. Theor. Biol. 235, 221–232.

    Article  MathSciNet  Google Scholar 

  • Keller, E.F., Segel, L.A., 1971. Model for chemotaxis. J. Theor. Biol. 30, 225–235.

    Article  Google Scholar 

  • Kidd, K.R., Nagle, R.B., Williams, S., 2002. Angiogenesis and neovascularization associated with extracellular matrix-modified porous implants. J. Biomed. Mater. Res. 59, 366–477.

    Article  Google Scholar 

  • Lauffenburger, D.A., Horwitz, A.F., 1996. Cell migration: A physically integrated progress. Cell 84, 359–369.

    Article  Google Scholar 

  • Liekens, S., Clercq, E.D., Neyts, J., 2001. Angiogenesis: Regulators and clinical applications. Biochem. Pharmacol. 61, 253–370.

    Article  Google Scholar 

  • Maheshwari, G., Lauffenburger, D.A., 1998. Deconstructing (and reconstructing) cell migration. Micro. Res. Tech. 43, 358–368.

    Article  Google Scholar 

  • Matsumoto, M., Nishimura, T., 1998. Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model Comput. Simulation 8, 3–30.

    Article  MATH  Google Scholar 

  • Othmer, H.G., Stevens, A., 1997. Aggregation, blowup, and collapse: The abc's of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081.

    Article  MATH  MathSciNet  Google Scholar 

  • Risau, W., 1997. Mechanisms of angiogenesis. Nature 386, 671–674.

    Article  Google Scholar 

  • Rivero, M.A., Tranquillo, R.T., Buettner, H.M., Lauffenburger, D.A., 1989. Transport models for chemotactic cell populations based on individual cell behavior. Chem. Eng. Sci. 44, 2881–2897.

    Article  Google Scholar 

  • Sanders, J.E., Malcolm, S.G., Bale, S.D., Wang, Y.N., Lamont, S., 2002. Prevascularization of a biomaterial using a chorioallontoic membrane. Microvasc. Res. 64, 174–178.

    Article  Google Scholar 

  • Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F., 2003. Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779.

    Article  Google Scholar 

  • Sharkawy, A.A., Klitzman, B., Truskey, G.A., Reichert, W.M., 1998. Engineering the tissue which encapsulates subcutaneous implants. II. Plasma–tissue exchange properties. J. Biomed. Mater. Res. 40, 598–605.

    Article  Google Scholar 

  • Shenderov, A.D., Sheetz, M.P., 1997. Inversely correlated cycles in speed and turning in an ameba: An oscillatory model of cell locomotion. Biophys. J. 72, 2382–2389.

    Article  Google Scholar 

  • Sieminski, A.L., Gooch, K.J., 2000. Biomaterial–microvasculature interactions. Biomaterials 22, 2233–2241.

    Article  Google Scholar 

  • Sleeman, B.D., Wallace, I.P., 2002. Tumour induced angiogenesis as a reinforced random walk: Modelling capillary network formation without endothelial cell proliferation. Math. Comput. Model 36, 339–358.

    Article  MATH  Google Scholar 

  • Stokes, C.L., Lauffenburger, D.A., 1991. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 3, 377–403.

    Article  Google Scholar 

  • Tong, S., Yuan, F., 2001. Numerical simulation of angiogenesis in the cornea. Microvas. Res. 61, 14–27.

    Article  Google Scholar 

  • Zhang, Z., Zou, W., Wang, J., Gu, J., Dang, Y., Li, B., Zhao, L., Qian, C., Qian, Q., Liu, X., 2005. Suppression of tumor growth by oncolytic adenvirus-meditaed delivery of antiangiogenic gene, souble Flt-1. Mol. Therapy 11, 553–562.

    Article  Google Scholar 

  • Zigmond, S.H., 1977. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616.

    Article  Google Scholar 

  • Zygourakis, K., 1996. Quantification and regulation of cell migration. Tissue Eng. 2, 1–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron F. Abrams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbarzadeh, E., Abrams, C.F. Simulations of Chemotaxis and Random Motility in 2D Random Porous Domains. Bull. Math. Biol. 69, 747–764 (2007). https://doi.org/10.1007/s11538-006-9153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9153-1

Keywords

Navigation