Skip to main content
Log in

Blow-up of regular submanifolds in Heisenberg groups and applications

  • Published:
Central European Journal of Mathematics

Abstract

We obtain a blow-up theorem for regular submanifolds in the Heisenberg group, where intrinsic dilations are used. Main consequence of this result is an explicit formula for the density of (p+1)-dimensional spherical Hausdorff measure restricted to a p-dimensional submanifold with respect to the Riemannian surface measure. We explicitly compute this formula in some simple examples and we present a lower semicontinuity result for the spherical Hausdorff measure with respect to the weak convergence of currents. Another application is the proof of an intrinsic coarea formula for vector-valued mappings on the Heisenberg group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio: “Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces”, Adv. Math., Vol. 159, (2001), pp. 51–67.

    Article  MATH  MathSciNet  Google Scholar 

  2. Z.M. Balogh: “Size of characteristic sets and functions with prescribed gradients”, J. Reine Angew. Math., Vol. 564, (2003), pp. 63–83.

    MATH  MathSciNet  Google Scholar 

  3. A. Bellaïche and J.J. Risler (Eds.): Sub-Riemannian geometry, Progress in Mathematics, Vol. 144, Birkhäuser Verlag, Basel, 1996.

    Google Scholar 

  4. Y.D. Burago and V.A. Zalgaller: Geometric inequalities, Grundlehren Math. Springer, Berlin.

  5. H. Federer: Geometric Measure Theory, Springer, 1969.

  6. G.B. Folland and E.M. Stein: Hardy Spaces on Homogeneous groups, Princeton University Press, 1982.

  7. B. Franchi, R. Serapioni and F. Serra Cassano: “Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields”, Houston Jour. Math., Vol. 22, (1996), pp. 859–889.

    MathSciNet  Google Scholar 

  8. B. Franchi, R. Serapioni and F. Serra Cassano: “Rectifiability and Perimeter in the Heisenberg group”, Math. Ann., Vol. 321(3), (2001).

  9. B. Franchi, R. Serapioni and F. Serra Cassano: “Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups”, Comm. Anal. Geom., Vol. 11(5), (2003), pp. 909–944.

    MathSciNet  Google Scholar 

  10. B. Franchi, R. Serapioni and F. Serra Cassano: Regular submanifolds, graphs and area formula in Heisenberg groups, preprint, (2004).

  11. M. Gromov: “Carnot-Carathéodory spaces seen from within”, In: A. Bellaiche and J. Risler (Eds.): Subriemannian Geometry, Progress in Mathematics, Vol. 144, Birkhauser Verlag, Basel, 1996.

    Google Scholar 

  12. N. Garofalo and D.M. Nhieu: “Isoperimetric and Sobolev Inequalities for Carnot-Carathéodory Spaces and the Existence of Minimal Surfaces”, Comm. Pure Appl. Math., Vol. 49, (1996), pp. 1081–1144.

    Article  MathSciNet  Google Scholar 

  13. P. Hajlasz and P. Koskela: “Sobolev met Poincaré”, Mem. Amer. Math. Soc., Vol. 145, (2000).

  14. B. Kirchheim and F. Serra Cassano: “Rectifiability and parametrization of intrinsic regular surfaces in the Heisenberg group”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Vol. 3(4), (2004), pp. 871–896.

    MathSciNet  Google Scholar 

  15. A. Korányi: “Geometric properties of Heisenberg-type groups”, Adv. Math., Vol. 56(1), (1985), pp. 28–38.

    Article  MATH  Google Scholar 

  16. I. Kupka: “Géométrie sous-riemannienne”, Astérisque, Vol. 241(817,5), (1997), pp. 351–380.

    MATH  MathSciNet  Google Scholar 

  17. V. Magnani: “Differentiability and Area formula on stratified Lie groups”, Houston Jour. Math., Vol. 27(2), (2001), pp. 297–323.

    MATH  MathSciNet  Google Scholar 

  18. V. Magnani: “On a general coarea inequality and applications”, Ann. Acad. Sci. Fenn. Math., Vol. 27, (2002), pp. 121–140.

    MATH  MathSciNet  Google Scholar 

  19. V. Magnani: “A Blow-up Theorem for regular hypersurfaces on nilpotent groups”, Manuscripta Math., Vol. 110(1), (2003), pp. 55–76.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. Magnani: “The coarea formula for real-valued Lipschitz maps on stratified groups”, Math. Nachr., Vol. 278(14), (2005), pp. 1–17.

    Article  MathSciNet  Google Scholar 

  21. V. Magnani: “Note on coarea formulae in the Heisenberg group”, Publ. Mat., Vol. 48(2), (2004), pp. 409–422.

    MATH  MathSciNet  Google Scholar 

  22. V. Magnani: “Characteristic points, rectifiability and perimeter measure on stratified groups”, J. Eur. Math. Soc., to appear.

  23. R. Montgomery: A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, Vol. 91, American Mathematical Society, Providence, 2002.

    Google Scholar 

  24. P.Pansu, Geometrie du Group d'Heisenberg, Thesis (PhD), 3rd ed., Université Paris VII, 1982.

  25. P. Pansu, “Une inégalité isoperimetrique sur le groupe de Heisenberg”, C.R. Acad. Sc. Paris, Série I, Vol. 295, (1982), pp. 127–130.

    MATH  MathSciNet  Google Scholar 

  26. P. Pansu: “Métriques de Carnot-Carathéodory quasiisométries des espaces symétriques de rang un”, Ann. Math., Vol. 129, (1989), pp. 1–60.

    Article  MATH  MathSciNet  Google Scholar 

  27. E.M. Stein: Harmonic Analysis, Princeton University Press, 1993.

  28. N.Th. Varopoulos, L. Saloff-Coste and T. Coulhon: Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Magnani, V. Blow-up of regular submanifolds in Heisenberg groups and applications. centr.eur.j.math. 4, 82–109 (2006). https://doi.org/10.1007/s11533-005-0006-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11533-005-0006-1

Keywords

MSC (2000)

Navigation