Skip to main content
Log in

Spatial Modeling and Analysis of Heat-Related Morbidity in Maricopa County, Arizona

  • Published:
Journal of Urban Health Aims and scope Submit manuscript

Abstract

The objective of the present study was to examine the effects of a confluence of demographic, socioeconomic, housing, and environmental factors that systematically contribute to heat-related morbidity in Maricopa County, Arizona, from theoretical, empirical, and spatial perspectives. The present study utilized ordinary least squares (OLS) regression and multiscale geographically weighted regression (MGWR) to analyze health data, U.S. census data, and remotely sensed data. The results suggested that the MGWR model showed a significant improvement in goodness of fit over the OLS regression model, which implies that spatial heterogeneity is an essential factor that influences the relationship between these factors. Populations of people aged 65+, Hispanic people, disabled people, people who do not own vehicles, and housing occupancy rate have much stronger local effects than other variables. These findings can be used to inform and educate local residents, communities, stakeholders, city managers, and urban planners in their ongoing and extensive efforts to mitigate the negative impacts of extreme heat on human health in Maricopa County.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnett AG. Temperature and cardiovascular deaths in the US Elderly: changes over time. Epidemiology. 2007;18(3):369–72.

    Article  PubMed  Google Scholar 

  2. Bartos, M. D., & Chester, M. V. (2014). Assessing future extreme heat events at intra-urban scales: a comparative study of Phoenix and Los Angeles. In: Arizona State University Center for Earth Systems Engineering and Management Working Paper Series, stock # ASU-CESEM-2014-WPS-001. Available from https://repository.asu.edu/items/25228

  3. Bassil KL, Cole DC, Rahim M, Craig AM, Lou WYW, Schwartz B, et al. Temporal and spatial variation of heat-related illness using 911 medical dispatch data. Environ Res. 2009;109:600–6.

    Article  CAS  PubMed  Google Scholar 

  4. Bernatzky A. The contribution of tress and green spaces to a town climate. Energy and Buildings. 1982;5(1):1–10.

    Article  Google Scholar 

  5. Bi P, Parton KA, Wang J, Donald K. Temperature and direct effects on population health in Brisbane, 1986–1995. J Environ Health. 2008;70(8):48–53.

    PubMed  Google Scholar 

  6. Bolitho A, Miller F. Heat as emergency, heat as chronic stress: policy and institutional responses to vulnerability to extreme heat. Local Environ. 2017;22(6):682–98.

    Article  Google Scholar 

  7. Bolton CJ. Helping the homeless: program evaluation of Philadelphia’s supportive housing program (Doctoral dissertation). Philadelphia, PA: Drexel University; 2005.

    Google Scholar 

  8. Brazel A, Gober P, Lee S-J, Grossman-Clark S. Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Clim Res. 2007;33(2):171–82.

    Article  Google Scholar 

  9. Brunsdon C, Fotheringham AS, Charlton ME. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal. 1996;28(4):281–98.

    Article  Google Scholar 

  10. Byron SC. A continuum of care for homeless people (Doctoral dissertation). Tempe, AZ: Arizona State University; 2009.

    Google Scholar 

  11. Center for Disease Control and Prevention (CDC). (2013). Picture of America Report: Heat Related Illness. Available from https://www.cdc.gov/pictureofamerica/pdfs/picture_of_america_heat-related_illness.pdf. Accessed 13 Mar 2021.

  12. Chow WTL, Chuang W-C, Gober P. Vulnerability to extreme heat in metropolitan Phoenix: spatial, temporal, and demographic dimensions. Prof Geogr. 2012;64(2):286–302.

    Article  Google Scholar 

  13. Chuang W-C, Gober P. Predicting hospitalization for heat-related illness at the census-tract level: accuracy of a generic heat vulnerability index in Phoenix, Arizona (USA). Environ Health Perspect. 2015;123(6):606–12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chung MH, Park JC. Development of PCM cool roof system to control urban heat island considering temperate climatic conditions. Energy and Buildings. 2016;116:341–8.

    Article  Google Scholar 

  15. Clarke JF. Some effects of the urban structure on heat mortality. Environ Res. 1972;5:93–104.

    Article  CAS  PubMed  Google Scholar 

  16. Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, et al. Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environ Res. 2005;98(3):390–9.

    Article  CAS  PubMed  Google Scholar 

  17. Dorish, J. (2019). 10 All-time hottest weather temperature days in Phoenix. Available from https://localreviews.knoji.com/10-alltime-hottest-weather-temperature-days-in-phoenix/. Accessed 13 Mar 2021.

  18. Fotheringham AS, Yang W, Kang W. Multiscale geographically weighted regression (MGWR). Ann Am Assoc Geogr. 2017;107(6):1247–65.

    Google Scholar 

  19. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, et al. Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health. 2006;80(1):16–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gill SE, Handley JF, Ennos AR, Pauleit S. Adapting cities for climate change: the role of the green infrastructure. Built Environ. 2007;33(1):115–33.

    Article  Google Scholar 

  21. Goggins WB, Chan EY, Ng E, Ren C, Chen L. Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS One. 2012;7(6):e38551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grimmond S. Urbanization and global environmental change: local effects of urban warming. Geogr J. 2007;173(1):83–8.

    Article  Google Scholar 

  23. Gronlund CJ. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Curr Epidemiol Rep. 2014;1(3):165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gronlund CJ, Berrocal VJ, White-Newsome JL, Conlon KC, O’Neill MS. Vulnerability to extreme heat by socio-demographic characteristics and area green space among the elderly in Michigan, 1990–2007. Environ Res. 2015;136:449–61.

    Article  CAS  PubMed  Google Scholar 

  25. Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, Russo A, et al. Impact of high temperatures on mortality: is there an added heat wave effect? Epidemiology. 2006;17:632–8.

    Article  PubMed  Google Scholar 

  26. Hajat S, Kosatky T. Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health. 2010;64(9):753–60.

    Article  PubMed  Google Scholar 

  27. Harlan SL, Chowell G, Yang S, Petitti DB, Morales Butler EJ, Ruddell BL, et al. Heat-related deaths in hot cities: estimates of human tolerance to high temperature thresholds. Int J Environ Res Public Health. 2014;11:3304–26.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harlan SL, Declet-Barreto JH, Stefanov WL, Petitti DB. Neighborhood effects on heat deaths: social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ Health Perspect. 2013;121(2):197–204.

    Article  PubMed  Google Scholar 

  29. Hayhoe K, Sheridan S, Kalkstein L, Greene S. Climate change, heat waves, and mortality projections for Chicago. J Great Lakes Res. 2010;36:65–73.

    Article  Google Scholar 

  30. Heaviside C, Vardoulakis S, Cai XM. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ Health. 2016;15(1):S27.

    Article  Google Scholar 

  31. Hoffmann B, Hertel S, Boes T, Weiland D, Jöckel KH. Increased cause-specific mortality associated with 2003 heat wave in Essen, Germany. J Toxic Environ Health A. 2008;71(11-12):759–65.

    Article  CAS  Google Scholar 

  32. Hondula DM, Georgescu M, Balling RC Jr. Challenges associated with projecting urbanization-induced heat-related mortality. Sci Total Environ. 2014;490:538–44.

    Article  CAS  PubMed  Google Scholar 

  33. Huang G, Zhou W, Cadenasso ML. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J Environ Manag. 2011;92(7):1753–9.

    Article  Google Scholar 

  34. Jenerette GD, Harlan SL, Buyantuev A, Stefanov WL, Declet-Barreto J, Ruddell BL, et al. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc Ecol. 2016;31(4):745–60.

    Article  Google Scholar 

  35. Johnson DP, Wilson JS, Luber GC. Socioeconomic indicators of heat-related health risk supplemented with remotely sensed data. Int J Health Geogr. 2009;8(1):57.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jones TS, Liang AP, Kilbourne EM, Griffin MR, Patriarca PA, Fite Wassilak SG, et al. Morbidity and mortality associated with the July 1980 heat wave in St Louis and Kansas City, MO. JAMA. 1982;247(24):3327–31.

    Article  CAS  PubMed  Google Scholar 

  37. Karner A, Hondula DM, Vanos JK. Heat exposure during non-motorized travel: implications for transportation policy under climate change. J Transp Health. 2015;2(4):451–9.

    Article  Google Scholar 

  38. Kestens Y, Brand A, Fournier M, Goudreau S, Kosatsky T, Maloley M, et al. Modelling the variation of land surface temperature as determinant of risk of heat-related health events. Int J Health Geogr. 2011;10(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Klinenberg E. Heat wave: a social autopsy of disaster in Chicago. Chicago, IL, USA: University of Chicago Press; 2003.

    Google Scholar 

  40. Knochel JP. Environmental heat illness: an eclectic review. Arch Intern Med. 1974;133(5):841–64.

    Article  CAS  PubMed  Google Scholar 

  41. Kovats RS, Hajat S. Heat stress and public health: a critical review. Annu Rev Public Health. 2008;29:41–55.

    Article  PubMed  Google Scholar 

  42. Landsberg HE. Man-made climatic changes: man's activities have altered the climate of urbanized areas and may affect global climate in the future. Science. 1970;170(3964):1265–74.

    Article  CAS  PubMed  Google Scholar 

  43. Li D, Bou-Zeid E, Oppenheimer M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ Res Lett. 2014;9(5):055002.

    Article  Google Scholar 

  44. Li XX, Norford LK. Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Clim. 2016;16:59–74.

    Article  Google Scholar 

  45. Luber G, McGeehin M. Climate change and extreme heat events. Am J Prev Med. 2008;35(5):429–35.

    Article  PubMed  Google Scholar 

  46. Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 2004;305(5686):994–7.

    Article  CAS  PubMed  Google Scholar 

  47. Mushore TD, Mutanga O, Odindi J, Dube T. Determining extreme heat vulnerability of Harare Metropolitan City using multispectral remote sensing and socio-economic data. J Spat Sci. 2018;63(1):173–91.

    Article  Google Scholar 

  48. Myint SW, Wentz EA, Brazel AJ, Quattrochi DA. The impact of distinct anthropogenic and vegetation features on urban warming. Landsc Ecol. 2013;28(5):959–78.

    Article  Google Scholar 

  49. U.S. Department of Housing and Urban Development (HUD) (2019). Market predictors of homelessness: how housing and community factors shape homelessness rates within continuums of care. Available from https://www.huduser.gov/portal/sites/default/files/pdf/Market-Predictors-of-Homelessness.pdf. Accessed 13 Mar 2021.

  50. O’Neill MS, Carter R, Kish JK, Gronlund CJ, White-Newsome JL, Manarolla X, et al. Preventing heat-related morbidity and mortality: new approaches in a changing climate. Maturitas. 2009;64:98–103.

    Article  PubMed  PubMed Central  Google Scholar 

  51. O’Neill MS, Zanobetti A, Schwartz J. Disparities by race in heat-related mortality in four US cities: the role of air conditioning prevalence. J Urban Health. 2005;82(2):191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Oke TR. The energetic basis of the urban heat island. Q J R Meteorol Soc. 1982;108(455):1–24.

    Google Scholar 

  53. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005;438(7066):310–7.

    Article  CAS  PubMed  Google Scholar 

  54. Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F. Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect. 2011;119(5):701–6.

    Article  PubMed  Google Scholar 

  55. Petitti DB, Harlan SL, Chowell-Puente G, Ruddell D. Occupation and environmental heat-associated deaths in Maricopa County, Arizona: a case–control study. PLoS One. 2013;8(5):e62596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poumadère M, Mays C, Le Mer S, Blong R. The 2003 heat wave in France: dangerous climate change here and now. Risk Anal. 2005;25(6):1483–94.

    Article  PubMed  Google Scholar 

  57. Putnam H, Hondula DM, Urban A, Berisha V, Iniguez P, Roach M. It’s not the heat, it’s the vulnerability: attribution of the 2016 spike in heat-associated deaths in Maricopa County, Arizona. Environ Res Lett. 2018;13:1–10.

    Article  Google Scholar 

  58. Ramin B, Svoboda T. Health of the homeless and climate change. J Urban Health. 2009;86(4):654–64.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Reid CE, O’Neill MS, Gronlund CJ, Brines SJ, Brown DG, Diez-Roux AV, et al. Mapping community determinants of heat vulnerability. Environ Health Perspect. 2009;117(11):1730–6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Roman KK, O'Brien T, Alvey JB, Woo O. Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities. Energy. 2016;96:103–17.

    Article  Google Scholar 

  61. Rooney C, McMichael AJ, Kovats RS, Coleman MP. Excess mortality in England and Wales, and in Greater London, during the 1995 heatwave. J Epidemiol Community Health. 1998;52(8):482–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenfeld AH, Akbari H, Bretz S, Fishman BL, Kurn DM, Sailor D, et al. Mitigation of urban heat islands: materials, utility programs, updates. Energy and Buildings. 1995;22(3):255–65.

    Article  Google Scholar 

  63. Seto KC, Fragkias M, Güneralp B, Reilly MK. A meta-analysis of global urban land expansion. PLoS One. 2011;6(8):e23777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seto KC, Satterthwaite D. Interactions between urbanization and global environmental change. Curr Opin Environ Sustain. 2010;2:127–8.

    Article  Google Scholar 

  65. Shahmohamadi P, Che-Ani AI, Etessam I, Maulud KNA, Tawil NM. Healthy environment: the need to mitigate urban heat island effects on human health. Procedia Eng. 2011;20:61–70.

    Article  Google Scholar 

  66. Sharma A, Conry P, Fernando HJS, Hamlet AF, Hellmann JJ, Chen F. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ Res Lett. 2016;11(6):064004.

    Article  Google Scholar 

  67. Sheridan SC. A survey of public perception and response to heat warnings across four North American cities: an evaluation of municipal effectiveness. Int J Biometeorol. 2007;52(1):3–15.

    Article  PubMed  Google Scholar 

  68. Solís P, Vanos JK, Forbis RE Jr. The decision-making/accountability spatial incongruence problem for research linking environmental science and policy. Geogr Rev. 2017;107(4):680–704.

    Article  Google Scholar 

  69. Son JY, Lane KJ, Lee JT, Bell ML. Urban vegetation and heat-related mortality in Seoul, Korea. Environ Res. 2016;151:728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Synnefa A, Dandou A, Santamouris M, Tombrou M, Soulakellis N. On the use of cool materials as a heat island mitigation strategy. J Appl Meteorol Climatol. 2008;47(11):2846–56.

    Article  Google Scholar 

  71. Tan J, Zheng Y, Song G, Kalkstein LS, Kalkstein AJ, Tang X. Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol. 2007;51(3):193–200.

    Article  PubMed  Google Scholar 

  72. Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol. 2010;54(1):75–84.

    Article  PubMed  Google Scholar 

  73. U.S. Census Bureau. Quick Facts: Maricopa County. In: Arizona; 2019. Available from https://www.census.gov/quickfacts/maricopacountyarizona. Accessed 13 Mar 2021.

  74. U.S. Climate Data. (2019). Climate Phoenix – Arizona. Available from https://www.usclimatedata.com/climate/phoenix/arizona/united-states/usaz0166/2019/1. Accessed 13 Mar 2021.

  75. Uejio CK, Wilhelmi OV, Golden JS, Mills DM, Gulino SP, Samenow JP. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place. 2011;17(2):498–507.

    Article  PubMed  Google Scholar 

  76. Wang C, Li Y, Myint SW, Zhao Q, Wentz EA. Impacts of spatial clustering of urban land cover on land surface temperature across Köppen climate zones in the contiguous United States. Landsc Urban Plan. 2019;192:103668.

    Article  Google Scholar 

  77. Wang C, Middel A, Myint SW, Kaplan S, Brazel AJ, Lukasczyk J. Assessing local climate zones in arid cities: the case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS J Photogramm Remote Sens. 2018;141:59–71.

    Article  Google Scholar 

  78. Wang C, Myint S, Wang Z, Song J. Spatio-temporal modeling of the urban heat island in the Phoenix metropolitan area: land use change implications. Remote Sens. 2016;8(3):185.

    Article  Google Scholar 

  79. Xu Y, Dadvand P, Barrera-Gómez J, Sartini C, Marí-Dell'Olmo M, Borrell C, et al. Differences on the effect of heat waves on mortality by sociodemographic and urban landscape characteristics. J Epidemiol Community Health. 2013;67(6):519–25.

    Article  PubMed  Google Scholar 

  80. Yang J, Wang ZH, Kaloush KE. Environmental impacts of reflective materials: is high albedo a ‘silver bullet’ for mitigating urban heat island? Renew Sust Energ Rev. 2015;47:830–43.

    Article  CAS  Google Scholar 

  81. Yang L, Jin S, Danielson P, Homer C, Gass L, Bender SM, et al. A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies. ISPRS J Photogramm Remote Sens. 2018;146:108–23.

    Article  Google Scholar 

  82. Yin H, Kong F, Dronova I, Middel A, James P. Investigation of extensive green roof outdoor spatio-temporal thermal performance during summer in a subtropical monsoon climate. Sci Total Environ. 2019;696:133976.

    Article  CAS  PubMed  Google Scholar 

  83. Yip FY, Flanders WD, Wolkin A, Engelthaler D, Humble W, Neri A, et al. The impact of excess heat events in Maricopa County, Arizona: 2000–2005. Int J Biometeorol. 2008;52(8):765–72.

    Article  PubMed  Google Scholar 

  84. Yu W, Vaneckova P, Mengersen K, Pan X, Tong S. Is the association between temperature and mortality modified by age, gender and socio-economic status? Sci Total Environ. 2010;408(17):3513–8.

    Article  CAS  PubMed  Google Scholar 

  85. Zheng B, Myint SW, Fan C. Spatial configuration of anthropogenic land cover impacts on urban warming. Landsc Urban Plan. 2014;130:104–11.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Virginia G. Piper Charitable Trust. Piper Trust is a private foundation that supports organizations that enrich health, well-being, and opportunity for the people of Maricopa County, Arizona. The conclusions, views, and opinions expressed in this poster are those of the authors and do not necessarily reflect the official policy or position of the Virginia G. Piper Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuyuan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Solís, P., Villa, L. et al. Spatial Modeling and Analysis of Heat-Related Morbidity in Maricopa County, Arizona. J Urban Health 98, 344–361 (2021). https://doi.org/10.1007/s11524-021-00520-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11524-021-00520-7

Keywords

Navigation