Skip to main content

Advertisement

Log in

Morbidity Forecast in Cities: A Study of Urban Air Pollution and Respiratory Diseases in the Metropolitan Region of Curitiba, Brazil

  • Published:
Journal of Urban Health Aims and scope Submit manuscript

Abstract

In the last two decades, urbanization has intensified, and in Brazil, about 90% of the population now lives in urban centers. Atmospheric patterns have changed owing to the high growth rate of cities, with negative consequences for public health. This research aims to elucidate the spatial patterns of air pollution and respiratory diseases. A data-based model to aid local urban management to improve public health policies concerning air pollution is described. An example of data preparation and multivariate analysis with inventories from different cities in the Metropolitan Region of Curitiba was studied. A predictive model with outstanding accuracy in prediction of outbreaks was developed. Preliminary results describe relevant relations among morbidity scales, air pollution levels, and atmospheric seasonal patterns. The knowledge gathered here contributes to the debate on social issues and public policies. Moreover, the results of this smaller scale study can be extended to megacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davis CA, Bardet JP. Lifelines in megacities. In: Geotechnics and earthquake geotechnics towards global sustainability. Dordrecht: Springer; 2011. p. 37–58

  2. Gurjar, B. R., Molina, L. T., & Ojha, C. S. P. (Eds.). (2010). Air pollution: health and environmental impacts. New York Boca raton; CRC Press.

  3. Silva SJ, Arellano AF, Worden HM. Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity. Geophys Res Lett. 2013;40(18):4971–6.

    Article  CAS  Google Scholar 

  4. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, et al. Global change and the ecology of cities. Science. 2008;319(5864):756–60.

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy C, Cuddihy J, Engel-Yan J. The changing metabolism of cities. J Ind Ecol. 2007;11(2):43–59.

    Article  CAS  Google Scholar 

  6. Decker EH, Elliott S, Smith FA, Blake DR, Rowland FS. Energy and material flow through the urban ecosystem. Annu Rev Energy Environ. 2000;25(1):685–740.

    Article  Google Scholar 

  7. Hino AAF, Reis RS, Sarmiento OL, Parra DC, Brownson RC. Built environment and physical activity for transportation in adults from Curitiba, Brazil. J Urban Health. 2013;17:1–17.

    Google Scholar 

  8. Ramirez-Marrero FA, Welle B, Cordero EA, Paz FM, Crespo C, Dujon V, et al. Transport and health: a look at three Latin American cities. Cad Saúde Pública (ENSP Impresso). 2013;29:654–66.

    Article  Google Scholar 

  9. Brownson RC, Reis RS, Allen P, Duggan K, Fields R, Stamatakis KA, et al. Understanding administrative evidence-based practices. Am J Prev Med. 2014;46:49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martins LC, Latorre MDRDD, Cardoso MRA, Gonçalves FLT, Saldiva PHN, Braga ALF. Poluição atmosférica e atendimentos por pneumonia e gripe em São Paulo, Brasil. Rev Saude Publica. 2002;36(1):88–94.

    Article  PubMed  Google Scholar 

  11. Bakonyi, S. M. C., Danni-Oliveira, I. M., Martins, L. C., & Braga, A. L. F. (2004). Poluição atmosférica e doenças respiratórias em crianças na cidade de Curitiba, PR. Rev Saude Publica, 38(5), 695–700.

  12. Duren RM, Miller CE. Measuring the carbon emissions of megacities. Nat Clim Chang. 2012;2(8):560–2.

    Article  CAS  Google Scholar 

  13. Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet. 2013;382(9897):1039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu H, Liu G. Spatial effects of carbon dioxide emissions from residential energy consumption: a county-level study using enhanced nocturnal lighting. Appl Energy. 2014;131:297–306.

    Article  CAS  Google Scholar 

  15. Liu HY, Skjetne E, Kobernus M. Mobile phone tracking: in support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment. Environ Health. 2013;12:93.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guan D, Liu Z, Geng Y, Lindner S, Hubacek K. The gigatonne gap in China’s carbon dioxide inventories. Nat Clim Chang. 2012;2(9):672–5.

    Article  CAS  Google Scholar 

  17. Newman S, Jeong S, Fischer ML, Xu X, Haman CL, Lefer B, et al. Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010. Atmos Chem Phys. 2013;13(8):4359–72.

    Article  CAS  Google Scholar 

  18. Gurney KR, Razlivanov I, Song Y, Zhou Y, Benes B, Abdul-Massih M. Quantification of fossil fuel CO2 emissions on the building/street scale for a large US City. Environ Sci Technol. 2012;46(21):12194–202.

    Article  CAS  PubMed  Google Scholar 

  19. Kort EA, Frankenberg C, Miller CE, Oda T. Space-based observations of megacity carbon dioxide. Geophys Res Lett. 2012;39(17):L17806.

    Article  CAS  Google Scholar 

  20. von der Weiden-Reinmüller SL, Drewnick F, Crippa M, Prévôt ASH, Meleux F, Baltensperger U, et al. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area. Atmos Meas Tech. 2014;7(1):279–99.

    Article  CAS  Google Scholar 

  21. Guttikunda SK, Calori G. A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India. Atmos Environ. 2013;67:101–11.

    Article  CAS  Google Scholar 

  22. Kan H, Chen R, Tong S. Ambient air pollution, climate change, and population health in China. Environ Int. 2012;42:10–9.

    Article  CAS  PubMed  Google Scholar 

  23. IAP (Instituto Ambiental do Paraná), Relatório de Monitoramento da Qualidade do Ar (em tempo real), (2014). Available online at: http://www.iap.pr.gov.br/modules/conteudo/conteudo.php?conteudo=1076. Accessed 10 June 2014.

  24. Duchiade MP. Poluição do ar e doenças respiratórias: Uma revisão. Cad Saúde Pública. 1992;8(3):311–30.

    Article  Google Scholar 

  25. De Moura, MAC. A Urbanização em Campina Grande e suas relações com a incidência de doenças respiratórias no município eo clima local. UFCG. Programa de Pós-Graduação em Recursos Naturais. 2009.

  26. D'Angiola A, Dawidowski LE, Gómez DR, Osses M. On-road traffic emissions in a megacity. Atmos Environ. 2010;44(4):483–93.

    Article  CAS  Google Scholar 

  27. Pyle D. Data preparation for data mining. San Francisco, CA: Morgan Kaufmann; 1999.

  28. Braverman A. A statistical perspective on climate informatics. Pasadena, CA: 2012.

  29. Merbitz H, Buttstädt M, Michael S, Dott W, Schneider C. GIS-based identification of spatial variable enhancing heat and poor air quality in urban areas. Appl Geogr. 2012;33:94–106.

    Article  Google Scholar 

  30. Scoggins A, Kjellstrom T, Fisher G, Connor J, Gimson N. Spatial analysis of annual air pollution exposure and mortality. Sci Total Environ. 2004;321:71–85.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Wei Y, Tian W, Yang K. GIS-based emission inventories of urban scale: a case study of Hangzhou, China. Atmos Environ. 2008;42:5150–65.

    Article  CAS  Google Scholar 

  32. Wang X. Integrating GIS, simulation models, and visualization in traffic impact analysis. Comput Environ Urban Syst. 2005;29:471–96.

    Article  Google Scholar 

  33. Moragues A, Alcaide T. The use of a geographical information system to assess the effect of traffic pollution. Sci Total Environ. 1996;189–190:267–73.

    Article  Google Scholar 

  34. Gulliver J, Briggs DJ. Time–space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ Res. 2005;97:10–25.

    Article  CAS  PubMed  Google Scholar 

  35. Duarte, F., Gadda, T., Luna, C. A. M., & Souza, F. T. (2016). What to expect from the future leaders of Bogotá and Curitiba in terms of public transport: opinions and practices among university students. Transport Res F: Traffic Psychol Behav, 38, 7–21.

  36. Souza FT, Koerner TC, Chlad R. A data-based model for predicting wildfires in Chapada das Mesas National Park in the State of Maranhão. Environ Earth Sci. 2015;74(4):3603–11. https://doi.org/10.1007/s12665-015-4421-8.

    Article  Google Scholar 

  37. Wentz EA, Anderson S, Fragkias M, Netzband M, Mesev V, Myint SW, et al. Supporting global environmental change research: a review of trends and knowledge gaps in urban remote sensing. Remote Sens. 2014;6(5):3879–905.

    Article  Google Scholar 

  38. Faghmous JH, Kumar V. Spatio-temporal data mining for climate data: advances, challenges, and opportunities. In: Data mining and knowledge discovery for big data. Berlin Heidelberg: Springer; 2014. p. 83–116.

    Chapter  Google Scholar 

  39. Morik K, Bhaduri K, Kargupta H. Introduction to data mining for sustainability. Data Min Knowl Disc. 2012;24(2):311–24.

    Article  Google Scholar 

  40. Agrawal R, Srikant R. Fast algorithms for mining association rules. Proc. 20th int. conf. very large data bases, VLDB. Vol. 1215. 1994.

  41. Agrawal, R, Imieliński, T, Swami, A. Mining association rules between sets of items in large databases. In: Acm sigmod record. ACM, 1993. p. 207–16.

  42. Hu K, Lu Y, Zhou L, Shi C. Integrating classification and association rule mining: a concept lattice framework. International workshop on rough sets, fuzzy sets, data mining, and granular-soft computing. Berlin, Heidelberg: Springer; 1999.

  43. Souza FT, Ebecken NFF. A data-based model to predict landslide induced by rainfall in Rio de Janeiro City. Geotech Geol Eng. 2012;30(1):85–94. https://doi.org/10.1007/s10706-011-9451-8.

    Article  Google Scholar 

  44. Liu B, Hsu W, Chen S, Ma Y. Analyzing the subjective interestingness of association rules. Intell Syst Appl, IEEE. 2000;15(5):47–55.

    Article  Google Scholar 

  45. Gurney KR, Mendoza DL, Zhou Y, Fischer ML, Miller CC, Geethakumar S, et al. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ Sci Technol. 2009;43(14):5535–41.

    Article  CAS  PubMed  Google Scholar 

  46. Schwandner FM, Miller CE, Duren RM, Natraj V, Eldering A, Gunson MR, Crisp, D. Strategies for satellite-based monitoring of CO2 from distributed area and point sources. EGU General Assembly Conference Abstracts. Vol. 16. 2014.

  47. Patton AP, Zamore W, Naumova EN, Levy JI, Brugge D, Durant JL. Transferability and generalizability of regression models of ultrafine particles in urban neighborhoods in the Boston area. Environ Sci Technol. 2015;49(10):6051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu LJS, Olson MP, Allen GA, Koutrakis P, McDonnell WF, Gerrity TR. Evaluation of the Harvard ozone passive sampler on human subjects indoors. Environ Sci Technol. 1994;28(5):915–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to the CNPq by the financial support of the actual research and the institutes which provided the data: Environmental Institute of Paraná (IAP); State Health Secretary (SESA); Institute of Urban Planning of Curitiba (IPPUC); Mary´s Protection Center of Children and Teenagers (CEDIN). MCTI/CNPQ/Universal 14/2014 449558/2014-2

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Teodoro de Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, F.T. Morbidity Forecast in Cities: A Study of Urban Air Pollution and Respiratory Diseases in the Metropolitan Region of Curitiba, Brazil. J Urban Health 96, 591–604 (2019). https://doi.org/10.1007/s11524-018-0271-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11524-018-0271-5

Keywords

Navigation