Skip to main content
Log in

A Melanoma-Tailored Next-Generation Sequencing Panel Coupled with a Comprehensive Analysis to Improve Routine Melanoma Genotyping

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Tumor molecular deciphering is crucial in clinical management. Pan-cancer next-generation sequencing panels have moved towards exhaustive molecular characterization. However, because of treatment resistance and the growing emergence of pharmacological targets, tumor-specific customized panels are needed to guide therapeutic strategies.

Objective

The objective of this study was to present such a customized next-generation sequencing panel in melanoma.

Methods

Melanoma patients with somatic molecular profiling performed as part of routine care were included. High-throughput sequencing was performed with a melanoma tailored next-generation sequencing panel of 64 genes involved in molecular classification, prognosis, theranostic, and therapeutic resistance. Single nucleotide variants and copy number variations were screened, and a comprehensive molecular analysis identified clinically relevant alterations.

Results

Four hundred and twenty-one melanoma cases were analyzed (before any treatment initiation for 94.8% of patients). After bioinformatic prioritization, we uncovered 561 single nucleotide variants, 164 copy number variations, and four splice-site mutations. At least one alteration was detected in 368 (87.4%) lesions, with BRAF, NRAS, CDKN2A, CCND1, and MET as the most frequently altered genes. Among patients with BRAFV600 mutated melanoma, 44.5% (77 of 173) harbored at least one concurrent alteration driving potential resistance to mitogen-activated protein kinase inhibitors. In patients with RAS hotspot mutated lesions and in patients with neither BRAFV600 nor RAS hotspot mutations, alterations constituting potential pharmacological targets were found in 56.9% (66 of 116) and 47.7% (63 of 132) of cases, respectively.

Conclusions

Our tailored next-generation sequencing assay coupled with a comprehensive analysis may improve therapeutic management in a significant number of patients with melanoma. Updating such a panel and implementing multi-omic approaches will further enhance patients’ clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ali Z, Yousaf N, Larkin J. Melanoma epidemiology, biology and prognosis. EJC Suppl. 2013;11:81–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Reddy BY, Miller DM, Tsao H. Somatic driver mutations in melanoma. Cancer. 2017;123:2104–17.

    PubMed  Google Scholar 

  3. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat J-P, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    PubMed  Google Scholar 

  5. Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17:1248–60.

    CAS  PubMed  Google Scholar 

  6. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:1270–1.

    PubMed  Google Scholar 

  7. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377:1345–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fisher KE, Zhang L, Wang J, Smith GH, Newman S, Schneider TM, et al. Clinical validation and implementation of a targeted next-generation sequencing assay to detect somatic variants in non-small cell lung, melanoma, and gastrointestinal malignancies. J Mol Diagn. 2016;18:299–315.

    PubMed  PubMed Central  Google Scholar 

  9. Siroy AE, Boland GM, Milton DR, Roszik J, Frankian S, Malke J, et al. Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Investig Dermatol. 2015;135:508–15.

    CAS  PubMed  Google Scholar 

  10. Miraflor AP, de Abreu FB, Peterson JD, Turner SA, Amos CI, Tsongalis GJ, et al. Somatic mutation analysis in melanoma using targeted next generation sequencing. Exp Mol Pathol. 2017;103:172–7.

    CAS  PubMed  Google Scholar 

  11. de Unamuno BB, Murria Estal R, Pérez Simó G, de Juan JI, Escutia Muñoz B, Rodríguez Serna M, et al. Towards personalized medicine in melanoma: implementation of a clinical next-generation sequencing panel. Sci Rep. 2017;7:495.

    Google Scholar 

  12. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4:94–109.

    PubMed  Google Scholar 

  14. Wagle N, Van Allen EM, Treacy DJ, Frederick DT, Cooper ZA, Taylor-Weiner A, et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 2014;4:61–8.

    CAS  PubMed  Google Scholar 

  15. Mourah S, How-Kit A, Meignin V, Gossot D, Lorillon G, Bugnet E, et al. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J. 2016;47:1785–96.

    CAS  PubMed  Google Scholar 

  16. Diefenbach RJ, Lee JH, Menzies AM, Carlino MS, Long GV, Saw RPM, et al. Design and testing of a custom melanoma next generation sequencing panel for analysis of circulating tumor DNA. Cancers (Basel). 2020;12:2228.

    PubMed Central  Google Scholar 

  17. Louveau B, Jouenne F, Reger de Moura C, Sadoux A, Baroudjian B, Delyon J, et al. Baseline genomic features in BRAFV600-mutated metastatic melanoma patients treated with BRAF inhibitor + MEK inhibitor in routine care. Cancers. 2019;11:1203.

    CAS  PubMed Central  Google Scholar 

  18. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.

    Google Scholar 

  19. Marconcini R, Galli L, Antonuzzo A, Bursi S, Roncella C, Fontanini G, et al. Metastatic BRAF K601E-mutated melanoma reaches complete response to MEK inhibitor trametinib administered for over 36 months. Exp Hematol Oncol. 2017;6:6.

    PubMed  PubMed Central  Google Scholar 

  20. Bowyer SE, Rao AD, Lyle M, Sandhu S, Long GV, McArthur GA, et al. Activity of trametinib in K601E and L597Q BRAF mutation-positive metastatic melanoma. Melanoma Res. 2014;24:504–8.

    CAS  PubMed  Google Scholar 

  21. Del Regno L, Louveau B, Battistella M, Sadoux A, Baroudjian B, Delyon J, et al. Clinical significance of BRAF/NRAS concurrent mutations in a clinic-based metastatic melanoma cohort. Br J Dermatol. 2020;182(5):1281–3.

    PubMed  Google Scholar 

  22. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ, et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA. 2009;106:20411–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kinoshita-Kikuta E, Kinoshita E, Ueda S, Ino Y, Kimura Y, Hirano H, et al. Increase in constitutively active MEK1 species by introduction of MEK1 mutations identified in cancers. Biochim Biophys Acta Proteins Proteom. 2019;1867:62–70.

    CAS  PubMed  Google Scholar 

  24. Manca A, Lissia A, Capone M, Ascierto PA, Botti G, Caracò C, et al. Activating PIK3CA mutations coexist with BRAF or NRAS mutations in a limited fraction of melanomas. J Transl Med. 2015;13:37.

    PubMed  PubMed Central  Google Scholar 

  25. Watson IR, Li L, Cabeceiras PK, Mahdavi M, Gutschner T, Genovese G, et al. The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. Cancer Res. 2014;74:4845–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4:80–93.

    CAS  PubMed  Google Scholar 

  27. Smalley KSM, Lioni M, Palma MD, Xiao M, Desai B, Egyhazi S, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther. 2008;7:2876.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yadav V, Burke TF, Huber L, Van Horn RD, Zhang Y, Buchanan SG, et al. The CDK4/6 inhibitor LY2835219 overcomes vemurafenib resistance resulting from MAPK reactivation and cyclin D1 upregulation. Mol Cancer Ther. 2014;13:2253–63.

    CAS  PubMed  Google Scholar 

  29. Flaherty K, Davies MA, Grob JJ, Long GV, Nathan P, Ribas A, et al. Genomic analysis and 3-year efficacy and safety update of COMBI-d. J Clin Oncol. 2016;34(15_Suppl.):9502.

    Google Scholar 

  30. Sheppard KE, AbuHammad S. CDK4/6 inhibition in cancer: the cell cycle splicing connection. Mol Cell Oncol. 2019;6:e1673643.

    PubMed  PubMed Central  Google Scholar 

  31. Riaz N, Havel JJ, Kendall SM, Makarov V, Walsh LA, Desrichard A, et al. Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy. Nat Genet. 2016;48:1327–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE, et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41:544–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Irvine M, Stewart A, Pedersen B, Boyd S, Kefford R, Rizos H. Oncogenic PI3K/AKT promotes the step-wise evolution of combination BRAF/MEK inhibitor resistance in melanoma. Oncogenesis. 2018;7:72.

    PubMed  PubMed Central  Google Scholar 

  34. Gold HL, Wengrod J, de Miera EV-S, Wang D, Fleming N, Sikkema L, et al. PP6C hotspot mutations in melanoma display sensitivity to Aurora kinase inhibition. Mol Cancer Res. 2014;12:433–9.

    CAS  PubMed  Google Scholar 

  35. Mondesir J, Willekens C, Touat M, de Botton S. IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. J Blood Med. 2016;7:171–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu H, Ma M, Yan J, Xu L, Yu J, Dai J, et al. Identification of coexistence of BRAF V600E mutation and EZH2 gain specifically in melanoma as a promising target for combination therapy. J Transl Med. 2017;15:243.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang W, Hu B, Qin J-J, Cheng J-W, Li X, Rajaei M, et al. A novel inhibitor of MDM2 oncogene blocks metastasis of hepatocellular carcinoma and overcomes chemoresistance. Genes Dis. 2019;6:419–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu C-E, Esfandiari A, Ho Y-H, Wang N, Mahdi AK, Aptullahoglu E, et al. Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. Br J Cancer. 2018;118:495–508.

    CAS  PubMed  Google Scholar 

  39. Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene. 2018;37:3183–99.

    CAS  PubMed  Google Scholar 

  40. Schettini F, De Santo I, Rea CG, De Placido P, Formisano L, Giuliano M, et al. CDK 4/6 inhibitors as single agent in advanced solid tumors. Front Oncol. 2018;8:608.

    PubMed  PubMed Central  Google Scholar 

  41. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6:740–53.

    CAS  PubMed  Google Scholar 

  42. Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman R-A, Teitcher J, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305:2327–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Das I, Wilhelm M, Höiom V, Marquez RF, Svedman FC, Hansson J, et al. Combining ERBB family and MET inhibitors is an effective therapeutic strategy in cutaneous malignant melanoma independent of BRAF/NRAS mutation status. Cell Death Dis. 2019;10:1–16.

    Google Scholar 

  44. Lau C, Killian KJ, Samuels Y, Rudloff U. ERBB4 mutation analysis: emerging molecular target for melanoma treatment. Methods Mol Biol. 2014;1102:461–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Prickett TD, Agrawal NS, Wei X, Yates KE, Lin JC, Wunderlich J, et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet. 2009;41:1127–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Capparelli C, Rosenbaum S, Berman-Booty LD, Salhi A, Gaborit N, Zhan T, et al. ErbB3–ErbB2 complexes as a therapeutic target in a subset of wild-type BRAF/NRAS cutaneous melanomas. Cancer Res. 2015;75:3554–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Capparelli C, Purwin TJ, Heilman SA, Chervoneva I, McCue PA, Berger AC, et al. ErbB3 targeting enhances the effects of MEK inhibitor in wild-type BRAF/NRAS melanoma. Cancer Res. 2018;78:5680–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Arafeh R, Qutob N, Emmanuel R, Keren-Paz A, Madore J, Elkahloun A, et al. Recurrent inactivating RASA2 mutations in melanoma. Nat Genet. 2015;47:1408–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26:1131–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Smalley I, Smalley KSM. ERK inhibition: a new front in the war against MAPK pathway-driven cancers? Cancer Discov. 2018;8:140–2.

    CAS  PubMed  Google Scholar 

  51. Olbryt M, Pigłowski W, Rajczykowski M, Pfeifer A, Student S, Fiszer-Kierzkowska A. Genetic profiling of advanced melanoma: candidate mutations for predicting sensitivity and resistance to targeted therapy. Target Oncol. 2020;15:101–13.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the patients who agreed to participate in the study, the Société Française de Dermatologie (SFD) for their support and Kirsten Dumaz for English proofreading. Baptiste Louveau was supported by La Fondation de l’Avenir (Bourse Legs Cancérologie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Mourah.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflict of interest

Barouyr Baroudjian declares honoraria from BMS, MSD, Novartis, and Pierre Fabre and travel accommodations from BMS and Pierre Fabre. Maxime Battistella declares a consulting role for Innate Pharma and Kyowa Kirin, honoraria from BMS and Takeda, travel accommodations from Roche, and research funding from Takeda and Kyowa Kirin. Julie Delyon declares travel accommodations from Pierre Fabre and Roche. Céleste Lebbe declares a consulting role for Amgen, BMS, MSD, Novartis, and Roche, research funding from BMS and Roche, honoraria from Amgen, BMS, Incyte, MSD, Novartis, Pfizer, Pierre Fabre, and Roche, and travel accommodations from BMS. Samia Mourah declares a consulting role for Novartis, Biocartis, and Roche and research funding from Roche, Novartis, BMS, and Biocartis. Laetitia Da Meda, Nicolas Dumaz, Aurélia Gruber, Fanélie Jouenne, Alban Lermine, Eddie Lopes, Baptiste Louveau, Oren Marco, Aminata Ndiaye, Aurélie Sadoux, Kevin Serror, and Pauline Têtu have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

The INSERM Research Ethics Committee has confirmed that no ethical approval is legally required for this retrospective study.

Consent to participate and publication

Informed consent was obtained from all individual participants included in the study.

Data availability and material

Sequencing data analyzed in this study have been deposited in the NCBI Sequence Read Archive (SRA). The accession number is PRJNA647798.

Code availability

Not applicable.

Author contributions

Conceptualization: SM, CL. Data curation: BL, FJ, AS, AG, EL, AN, AL. Formal analysis: BL, FJ. Investigation: BL, FJ, PT, AS, AG, EL, MB. Methodology: BL, FJ. Project administration: CL, SM. Resources: PT, JD, KS, OM, LDM, MB, BB. Software: AN, AL. Supervision: CL, SM. Validation: BL, FJ, CL, SM. Visualization: BL, FJ. Writing original draft: BL, FJ. Writing review and editing: ND, CL, SM.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louveau, B., Jouenne, F., Têtu, P. et al. A Melanoma-Tailored Next-Generation Sequencing Panel Coupled with a Comprehensive Analysis to Improve Routine Melanoma Genotyping. Targ Oncol 15, 759–771 (2020). https://doi.org/10.1007/s11523-020-00764-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-020-00764-4

Navigation