Skip to main content
Log in

Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a survival rate of 4–6 months from diagnosis. PDAC is the fourth leading cause of cancer-related death in the Western world, with a mortality rate of 10 cases per 100,000 population. Chemotherapy constitutes only a palliative strategy, with limited effects on life expectancy.

Aims

To investigate the biological response of PDAC to mitogen-activated protein kinase (MAPK) and NF-kappaB (NF-kB) inhibitors and the role of autophagy in the modulation of these signaling pathways in order to address the challenge of developing improved medical protocols for patients with PDAC.

Methods

Two ATCC cell lines, MIAPaCa-2 and PANC-1, were used as PDAC models. Cells were exposed to inhibitors of MAPK or NF-kB survival pathways alone or after autophagy inhibition. Several aspects were analyzed, as follows: cell proliferation, by [3H]TdR incorporation; cell death, by TUNEL assay, regulation of autophagy by LC3-II expression level and modulation of pro-and anti-apoptotic proteins by Western blot.

Results

We demonstrated that the inhibition of the MAPK and NF-kB survival pathways with U0126 and caffeic acid phenethyl ester (CAPE), respectively, produced strong inhibition of pancreatic tumor cell growth without inducing apoptotic death. Interestingly, U0126 and CAPE induced apoptosis after autophagy inhibition in a caspase-dependent manner in MIA PaCa-2 cells and in a caspase-independent manner in PANC-1 cells.

Conclusions

Here we present evidence that allows us to consider a combined therapy regimen comprising an autophagy inhibitor and a MAPK or NF-kB pathway inhibitor as a possible treatment strategy for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362(17):1605–17

    Article  CAS  PubMed  Google Scholar 

  2. Hidalgo M (2012) New insights into pancreatic cancer biology. Ann Oncol 23(Suppl 10):135–8

    Article  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  4. O'Reilly KE, Rojo F, She QB et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garcia MG, Alaniz LD, Cordo Russo RI et al (2009) PI3K/Akt inhibition modulates multidrug resistance and activates NFkB in murine Lymphoma cell lines. Leuk Res 33:288–96

    Article  CAS  PubMed  Google Scholar 

  6. Cox AD, Der CJ (1997) Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim Biophys Acta 1333(1):F51–71

    CAS  PubMed  Google Scholar 

  7. Muerkoster S, Arlt A, Sipos B et al (2005) Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 65(4):1316–24

    Article  PubMed  Google Scholar 

  8. Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–46

    Article  CAS  PubMed  Google Scholar 

  9. De Luca A, Maiello MR, D'Alessio A et al (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16:S17–27

    Article  PubMed  Google Scholar 

  10. Shimizu T, Tolcher AW, Papadopoulos KP et al (2012) The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res 18:2316–25

    Article  CAS  PubMed  Google Scholar 

  11. Wang LH (2014) LiY, Yang SN, et al. Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br J Cancer 110(2):34–52

    Article  Google Scholar 

  12. Sylvester RJ, van der Meijden AP, Oosterlinck W et al (2006) Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49:466–75

    Article  PubMed  Google Scholar 

  13. Vaux DL, Silke J (2003) Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 304:499–504

    Article  CAS  PubMed  Google Scholar 

  14. Wei Y, Fan T, Yu M (2008) Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin (Shanghai) 40:278–88

    Article  Google Scholar 

  15. Srinivasula SM, Ashwell JD (2008) IAPs: what's in a name? Mol Cell 30:123–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dubrez-Daloz L, Dupoux A, Cartier J (2008) IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle 7:1036–46

    Article  CAS  PubMed  Google Scholar 

  17. LaCasse EC, Mahoney DJ, Cheung HH et al (2008) IAP-targeted therapies for cancer. Oncogene 27:6252–75

    Article  CAS  PubMed  Google Scholar 

  18. Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13:5995–6000

    Article  CAS  PubMed  Google Scholar 

  19. Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukaryot Cell 1(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirkegaard K, Taylor MP, Jackson WT (2004) Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2(4):301–14

    Article  CAS  PubMed  Google Scholar 

  22. Ogawa M, Yoshimori T, Suzuki T et al (2005) Escape of intracellular Shigella from autophagy. Science 307(5710):727–31

    Article  CAS  PubMed  Google Scholar 

  23. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–9

    Article  CAS  PubMed  Google Scholar 

  24. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–4

    Article  CAS  PubMed  Google Scholar 

  25. Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–6

    Article  CAS  PubMed  Google Scholar 

  26. Liang XH, Yu J, Brown K et al (2001) Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res 61(8):3443–9

    CAS  PubMed  Google Scholar 

  27. Ravikumar B, Berger Z, Vacher C et al (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15(7):1209–16

    Article  CAS  PubMed  Google Scholar 

  28. Papademetrio DL, Cavaliere V, Simunovich T et al (2014) Interplay between autophagy and apoptosis in pancreatic tumors in response to gemcitabine. Target Oncol 9(2):123–34

    Article  PubMed  Google Scholar 

  29. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rubinsztein DC, Cuervo AM, Ravikumar B et al (2009) In search of an "autophagomometer". Autophagy 5(5):585–9

    Article  CAS  PubMed  Google Scholar 

  31. Conroy T, Desseigne F, Ychou M et al (2001) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–25

    Article  Google Scholar 

  32. Hill R, Rabb M, Madureira PA et al (2013) Gemcitabine-mediated tumour regression and p53-dependent gene expression: implications for colon and pancreatic cancer therapy. Cell Death Dis 4:e791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Biankin AV, Waddell N, Kassahn KS et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baines AT, Xu D, Der CJ (2011) Inhibition of Ras for cancer treatment: the search continues. Future Med Chem 3:1787–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Z, Cheng K, Walton Z et al (2012) A murine lung cancer coclinical trial identifies genetic modifiers of therapeutic response. Nature 483(7391):613–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jänne PA, Shaw AT, Pereira JR et al (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14:38–47

    Article  PubMed  Google Scholar 

  38. McCubrey JA, Steelman LS, Chappell WH et al (2012) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3:1068–111

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fujioka S, Sclabas GM, Schmidt C et al (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9:346–54

    CAS  PubMed  Google Scholar 

  40. Hu L, Shi Y, Hsu JH et al (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101:3126–35

    Article  CAS  PubMed  Google Scholar 

  41. Mayo MW, Wang CY, Cogswell PC et al (1997) Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–5

    Article  CAS  PubMed  Google Scholar 

  42. Li L, Aggarwal BB, Shishodia S et al (2004) Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101:2351–62

    Article  CAS  PubMed  Google Scholar 

  43. Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6:203–8

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto Y, Gaynor RB (2001) Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med 1:287–96

    Article  CAS  PubMed  Google Scholar 

  45. Aggarwal BB, Takada Y, Shishodia S et al (2004) Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol 42:341–53

    CAS  PubMed  Google Scholar 

  46. Karin M, Cao Y, Greten FR et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–10

    Article  CAS  PubMed  Google Scholar 

  47. Garg A, Aggarwal BB (2002) Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 16:1053–68

    Article  CAS  PubMed  Google Scholar 

  48. Lin Y, Shi R, Wang X et al (2008) Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets 8:634–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai X, Lu W, Yang Y et al (2013) Digitoflavone inhibits IκBα kinase and enhances apoptosis induced by TNFα through downregulation of expression of nuclear factor κB-regulated gene products in human pancreatic cancer cells. PLoS One 8(10):e77126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cavaliere V, Papademetrio DL, Lorenzetti M et al (2009) Caffeic Acid Phenylethyl Ester and MG-132 have apoptotic and antiproliferative effects on Leukemic cells but not on normal mononuclear cells. Transl Oncol 2(1):46–58

    Article  PubMed  PubMed Central  Google Scholar 

  51. Velculescu VE (1999) Essay: Amersham Pharmacia Biotech & Science prize. Tantalizing transcriptomes SAGE and its use in global gene expression analysis. Science 286(5444):1491–2

    Article  CAS  PubMed  Google Scholar 

  52. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8(1):61–70

    Article  CAS  PubMed  Google Scholar 

  53. Sarela AI, Macadam RC, Farmery SM et al (2000) Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut 46(5):645–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Monzo M, Rosell R, Felip E et al (1999) A novel anti-apoptosis gene: Re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J Clin Oncol 17(7):2100–4

    CAS  PubMed  Google Scholar 

  55. Shariat SF, Lotan Y, Saboorian H et al (2004) Survivin expression is associated with features of biologically aggressive prostate carcinoma. Cancer 100(4):751–7

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka K, Iwamoto S, Gon G et al (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Can 6(1):127–34

    CAS  Google Scholar 

  57. Jourdan M, Reme T, Goldschmidt H et al (2009) Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol 145(1):45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng SM, Chang YC, Liu CY et al (2015) YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br J Pharmacol 172(1):214–34

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Whiteman MW, Lian H et al (2009) A Non-canonical MEK/ERK Signaling Pathway Regulates Autophagy via Regulating Beclin 1. J Biol Chem 284(32):21412–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pattingre S, Bauvy C, Codogno PZ (2003) Amino acids interfere with the ERK1⁄ 2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 278:16667–74

    Article  CAS  PubMed  Google Scholar 

  61. Ellington AA, Berhow MA, Singletary KW (2006) Inhibition of Akt signaling and enhanced ERK1⁄ 2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27:298–306

    Article  CAS  PubMed  Google Scholar 

  62. Copetti T, Demarchi F, Schneider C (2009) p65/RelA binds and activates the beclin 1 promoter. Autophagy 5(6):858–9

    Article  PubMed  Google Scholar 

  63. Vadlamudi RK, Shin J (1998) Genomic structure and promoter analysis of the p62 gene encoding a nonproteasomal multiubiquitin chain binding protein. FEBS Lett 435:138–42

    Article  CAS  PubMed  Google Scholar 

  64. David A (2014) An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochem Pharmacol 90:208–11

    Article  Google Scholar 

  65. Yang S, Wang X, Contino G et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Daniela Ureta (Servicio de Citometría de flujo, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina) for technical assistance and Martín Levermann for language assistance during the edition of the manuscript.

Compliance with Ethical Standards

Funding

This study was funded by Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Conflict of Interest

The authors (DLP, SLL, TS, SC, CYM, VC, EA) declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Laura Papademetrio or Élida Álvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papademetrio, D.L., Lompardía, S.L., Simunovich, T. et al. Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy. Targ Oncol 11, 183–195 (2016). https://doi.org/10.1007/s11523-015-0388-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0388-3

Keywords

Navigation