Skip to main content
Log in

Afatinib resistance in non-small cell lung cancer involves the PI3K/AKT and MAPK/ERK signalling pathways and epithelial-to-mesenchymal transition

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The epidermal growth factor receptor (EGFR) signalling is one of the most deregulated pathways in non-small cell lung cancer (NSCLC). Recently, the development of novel irreversible tyrosine kinase inhibitors (TKI), such as afatinib, has significantly improved the survival of advanced NSCLC patients harbouring activated EGFR mutations. However, treatment with TKI is not always curative due to the development of resistance. In the present study, we investigated the sensitivity to afatinib in two NSCLC EGFR mutated cell lines (NCI-H1650 and NCI-H1975) by expression profile analysis of 92 genes involved in the EGF pathway. Thereafter, the established afatinib resistant clones were evaluated at different biological levels: genomic, by array comparative genomic hybridisation (aCGH) and deep sequencing; transcriptomic, by quantitative polymerase chain reaction (qPCR) and proteomic, by Western blot and immunofluorescence. The baseline gene expression of the two cell lines revealed that NCI-H1650, the less afatinib-responsive cell, showed activation of two main EGFR downstream pathways such as PI3K/AKT and PLCγ/PKC axes. Analysis of the afatinib-resistant cells showed PI3K/AKT and MAPK/ERK pathways activation together with a biological switch from an epithelial-to-mesenchymal phenotype might confer afatinib-resistant properties to this cell line. Our data suggest that the activation of EGFR-dependent downstream pathways might be involved in the occurrence of resistance to afatinib assuming that the EGFR mutational status should not be exclusively considered when selecting TKI treatments. In particular, the epithelial-to-mesenchymal transition might provide a new basis for understanding afatinib resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. NCCN Clinical practice guidelines in oncology: non-small cell lung cancer. Version 2.2013. [http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf]. Accessed 29 December 2013.

  3. Han W, Lo HW (2012) Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett 318(2):124–134. doi:10.1016/j.canlet.2012.01.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, Tan EH, Ho JC, da Chu T, Zaatar A, Osorio Sanchez JA, Vu VV, Au JS, Inoue A, Lee SM, Gebski V, Yang JC (2013) Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst 105:595–605. doi:10.1093/jnci/djt072

    Article  CAS  PubMed  Google Scholar 

  5. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, Akhavanfard S, Heist RS, Temel J, Christensen JG, Wain JC, Lynch TJ, Vernovsky K, Mark EJ, Lanuti M, Iafrate AJ, Mino-Kenudson M, Engelman JA (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3(75):75ra26. doi:10.1126/scitranslmed.3002003

    Article  PubMed Central  PubMed  Google Scholar 

  6. Uramoto H, Iwata T, Onitsuka T, Shimokawa H, Hanagiri T, Oyama T (2010) Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res 30(7):2513–2517

    CAS  PubMed  Google Scholar 

  7. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  8. Terai H, Soejima K, Yasuda H, Nakayama S, Hamamoto J, Arai D, Ishioka K, Ohgino K, Ikemura S, Sato T, Yoda S, Satomi R, Naoki K, Betsuyaku T (2013) Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC. Mol Cancer Res 11(6):759–767

    Article  CAS  PubMed  Google Scholar 

  9. Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW, Harris PL, Driscoll DR, Fidias P, Lynch TJ, Rabindran SK, McGinnis JP, Wissner A, Sharma SV, Isselbacher KJ, Settleman J, Haber DA (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A 102(21):7665–7670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabárbara P, Seymour L, National Cancer Institute of Canada Clinical Trials Group (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123–132

    Article  CAS  PubMed  Google Scholar 

  11. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27(34):4702–4711. doi:10.1038/onc.2008.109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Genova C, Rijavec E, Barletta G, Burrafato G, Biello F, Dal Bello MG, Coco S, Truini A, Alama A, Boccardo F, Grossi F (2014) Afatinib for the treatment of advanced non-small-cell lung cancer. Expert Opin Pharmacother 15(6):889–903. doi:10.1517/14656566.2014.902445

    Article  CAS  PubMed  Google Scholar 

  13. Dungo RT, Keating GM (2013) Afatinib: first global approval. Drugs 73(13):1503–15. doi:10.1007/s40265-013-0111-6

    Article  CAS  PubMed  Google Scholar 

  14. Kim Y, Ko J, Cui Z, Abolhoda A, Ahn JS, Ou SH, Ahn MJ, Park K (2012) The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol Cancer Ther 11(3):784–91. doi:10.1158/1535-7163.MCT-11-0750

    Article  CAS  PubMed  Google Scholar 

  15. Ware KE, Hinz TK, Kleczko E, Singleton KR, Marek LA, Helfrich BA, Cummings CT, Graham DK, Astling D, Tan AC, Heasley LE (2013) A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis 25(2):e39. doi:10.1038/oncsis.2013.4

    Article  Google Scholar 

  16. Coco S, Theissen J, Scaruffi P, Stigliani S, Moretti S, Oberthuer A, Valdora F, Fischer M, Gallo F, Hero B, Bonassi S, Berthold F, Tonini GP (2012) Age-dependent accumulation of genomic aberrations and deregulation of cell cycle and telomerase genes in metastatic neuroblastoma. Int J Cancer 131(7):1591–1600. doi:10.1002/ijc.27432

    Article  CAS  PubMed  Google Scholar 

  17. Coco S, De Mariano M, Valdora F, Servidei T, Ridola V, Andolfo I, Oberthuer A, Tonini GP, Longo L (2012) Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma. J Hum Genet 57(10):682–684. doi:10.1038/jhg.2012.87

    Article  CAS  PubMed  Google Scholar 

  18. Pelicci G, Dente L, De Giuseppe A, Verducci-Galletti B, Giuli S, Mele S, Vetriani C, Giorgio M, Pandolfi PP, Cesareni G, Pelicci PG (1996) A family of Shc related proteins with conserved PTB, CH1 and SH2 regions. Oncogene 13(3):633–641

    CAS  PubMed  Google Scholar 

  19. Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci PG (1996) Not all Shc’s roads lead to Ras. Trends Biochem Sci 21(7):257–261

    Article  CAS  PubMed  Google Scholar 

  20. Mackay HJ, Twelves CJ (2003) Protein kinase C: a target for anticancer drugs? Endocr Relat Cancer 10(3):389–396

    Article  CAS  PubMed  Google Scholar 

  21. Takenaga K, Takahashi K (1996) Effects of 12-O-tetradecanoylphorbol-13-acetate on adhesiveness and lung colonising ability of Lewis lung carcinoma cells. Cancer Res 46(1):375–380

    Google Scholar 

  22. Xu ZH, Hang JB, Hu JA, Gao BL (2013) RAF1-MEK1-ERK/AKT axis may confer NSCLC cell lines resistance to erlotinib. Int J Clin Exp Pathol 6(8):1493–1504

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Serizawa M, Takahashi T, Yamamoto N, Koh Y (2013) Genomic aberrations associated with erlotinib resistance in non-small cell lung cancer cells. Anticancer Res 33(12):5223–5233

    CAS  PubMed  Google Scholar 

  24. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71

    Article  CAS  PubMed  Google Scholar 

  25. Ahn KC, Choi JY, Kim JS, Hwang SG, Kim WJ, Park JK, Um HD (2013) ICAM-3 endows anticancer drug resistance against microtubule-damaging agents via activation of the ICAM-3-AKT/ERK-CREB-2 pathway and blockage of apoptosis. Biochem Biophys Res Commun 441(2):507–513. doi:10.1016/j.bbrc.2013.10.096

    Article  CAS  PubMed  Google Scholar 

  26. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562. doi:10.1038/nrc2664

    Article  CAS  PubMed  Google Scholar 

  27. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, García-Echeverría C, Schultz PG, Reddy VA (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 106(1):268–273. doi:10.1073/pnas.0810956106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, Kearsley JH, Li Y (2013) Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis 4:e875. doi:10.1038/cddis.2013.407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chen WC, Lai YA, Lin YC, Ma JW, Huang LF, Yang NS, Ho CT, Kuo SC, Way TD (2013) Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J Agric Food Chem 61(48):11817–11824. doi:10.1021/jf404092f

    Article  CAS  PubMed  Google Scholar 

  30. Buonato JM, Lazzara MJ (2014) ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 74(1):309–319. doi:10.1158/0008-5472.CAN-12-4721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233(3):706–720

    Article  CAS  PubMed  Google Scholar 

  32. Walter AO, Sjin RT, Haringsma HJ, Ohashi K, Sun J, Lee K, Dubrovskiy A, Labenski M, Zhu Z, Wang Z, Sheets M, St Martin T, Karp R, van Kalken D, Chaturvedi P, Niu D, Nacht M, Petter RC, Westlin W, Lin K, Jaw-Tsai S, Raponi M, Van Dyke T, Etter J, Weaver Z, Pao W, Singh J, Simmons AD, Harding TC, Allen A (2013) Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov 3(12):1404–1415. doi:10.1158/2159-8290.CD-13-0314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We kindly thank Dr. Cristina Bruzzo and Dr. Zita Cavalieri for technical support (cell lines maintenance, drug treatments, cytotoxicity tests).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Coco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coco, S., Truini, A., Alama, A. et al. Afatinib resistance in non-small cell lung cancer involves the PI3K/AKT and MAPK/ERK signalling pathways and epithelial-to-mesenchymal transition. Targ Oncol 10, 393–404 (2015). https://doi.org/10.1007/s11523-014-0344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-014-0344-7

Keywords

Navigation